improve gpu detection functions and logging in model server

This commit is contained in:
Richard Kuo (Danswer) 2025-02-07 16:59:02 -08:00
parent ae37f01f62
commit bc2c56dfb6
5 changed files with 54 additions and 17 deletions

View File

@ -28,3 +28,9 @@ class EmbeddingModelTextType:
@staticmethod
def get_type(provider: EmbeddingProvider, text_type: EmbedTextType) -> str:
return EmbeddingModelTextType.PROVIDER_TEXT_TYPE_MAP[provider][text_type]
class GPUStatus:
CUDA = "cuda"
MAC_MPS = "mps"
NONE = "none"

View File

@ -12,6 +12,7 @@ import voyageai # type: ignore
from cohere import AsyncClient as CohereAsyncClient
from fastapi import APIRouter
from fastapi import HTTPException
from fastapi import Request
from google.oauth2 import service_account # type: ignore
from litellm import aembedding
from litellm.exceptions import RateLimitError
@ -320,6 +321,7 @@ async def embed_text(
prefix: str | None,
api_url: str | None,
api_version: str | None,
gpu_type: str = "UNKNOWN",
) -> list[Embedding]:
if not all(texts):
logger.error("Empty strings provided for embedding")
@ -373,8 +375,11 @@ async def embed_text(
elapsed = time.monotonic() - start
logger.info(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with provider {provider_type} in {elapsed:.2f}"
f"event=embedding_provider "
f"texts={len(texts)} "
f"chars={total_chars} "
f"provider={provider_type} "
f"elapsed={elapsed:.2f}"
)
elif model_name is not None:
logger.info(
@ -403,6 +408,14 @@ async def embed_text(
f"Successfully embedded {len(texts)} texts with {total_chars} total characters "
f"with local model {model_name} in {elapsed:.2f}"
)
logger.info(
f"event=embedding_model "
f"texts={len(texts)} "
f"chars={total_chars} "
f"model={provider_type} "
f"gpu={gpu_type} "
f"elapsed={elapsed:.2f}"
)
else:
logger.error("Neither model name nor provider specified for embedding")
raise ValueError(
@ -455,8 +468,15 @@ async def litellm_rerank(
@router.post("/bi-encoder-embed")
async def process_embed_request(
async def route_bi_encoder_embed(
request: Request,
embed_request: EmbedRequest,
) -> EmbedResponse:
return await process_embed_request(embed_request, request.app.state.gpu_type)
async def process_embed_request(
embed_request: EmbedRequest, gpu_type: str = "UNKNOWN"
) -> EmbedResponse:
if not embed_request.texts:
raise HTTPException(status_code=400, detail="No texts to be embedded")
@ -484,6 +504,7 @@ async def process_embed_request(
api_url=embed_request.api_url,
api_version=embed_request.api_version,
prefix=prefix,
gpu_type=gpu_type,
)
return EmbedResponse(embeddings=embeddings)
except RateLimitError as e:

View File

@ -16,6 +16,7 @@ from model_server.custom_models import router as custom_models_router
from model_server.custom_models import warm_up_intent_model
from model_server.encoders import router as encoders_router
from model_server.management_endpoints import router as management_router
from model_server.utils import get_gpu_type
from onyx import __version__
from onyx.utils.logger import setup_logger
from shared_configs.configs import INDEXING_ONLY
@ -58,12 +59,10 @@ def _move_files_recursively(source: Path, dest: Path, overwrite: bool = False) -
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator:
if torch.cuda.is_available():
logger.notice("CUDA GPU is available")
elif torch.backends.mps.is_available():
logger.notice("Mac MPS is available")
else:
logger.notice("GPU is not available, using CPU")
gpu_type = get_gpu_type()
logger.notice(f"gpu_type={gpu_type}")
app.state.gpu_type = gpu_type
if TEMP_HF_CACHE_PATH.is_dir():
logger.notice("Moving contents of temp_huggingface to huggingface cache.")

View File

@ -1,7 +1,9 @@
import torch
from fastapi import APIRouter
from fastapi import Response
from model_server.constants import GPUStatus
from model_server.utils import get_gpu_type
router = APIRouter(prefix="/api")
@ -11,10 +13,7 @@ async def healthcheck() -> Response:
@router.get("/gpu-status")
async def gpu_status() -> dict[str, bool | str]:
if torch.cuda.is_available():
return {"gpu_available": True, "type": "cuda"}
elif torch.backends.mps.is_available():
return {"gpu_available": True, "type": "mps"}
else:
return {"gpu_available": False, "type": "none"}
async def route_gpu_status() -> dict[str, bool | str]:
gpu_type = get_gpu_type()
gpu_available = gpu_type != GPUStatus.NONE
return {"gpu_available": gpu_available, "type": gpu_type}

View File

@ -8,6 +8,9 @@ from typing import Any
from typing import cast
from typing import TypeVar
import torch
from model_server.constants import GPUStatus
from onyx.utils.logger import setup_logger
logger = setup_logger()
@ -58,3 +61,12 @@ def simple_log_function_time(
return cast(F, wrapped_sync_func)
return decorator
def get_gpu_type() -> str:
if torch.cuda.is_available():
return GPUStatus.CUDA
if torch.backends.mps.is_available():
return GPUStatus.MAC_MPS
return GPUStatus.NONE