mirror of
https://github.com/danswer-ai/danswer.git
synced 2025-10-10 21:26:01 +02:00
Added retries and multithreading for cloud embedding (#1879)
* added retries and multithreading for cloud embedding * refactored a bit * cleaned up code * got the errors to bubble up to the ui correctly * added exceptin printing * added requirements * touchups --------- Co-authored-by: Yuhong Sun <yuhongsun96@gmail.com>
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import concurrent.futures
|
||||
import gc
|
||||
import json
|
||||
from typing import Any
|
||||
@@ -10,6 +11,7 @@ from cohere import Client as CohereClient
|
||||
from fastapi import APIRouter
|
||||
from fastapi import HTTPException
|
||||
from google.oauth2 import service_account # type: ignore
|
||||
from retry import retry
|
||||
from sentence_transformers import CrossEncoder # type: ignore
|
||||
from sentence_transformers import SentenceTransformer # type: ignore
|
||||
from vertexai.language_models import TextEmbeddingInput # type: ignore
|
||||
@@ -40,65 +42,44 @@ router = APIRouter(prefix="/encoder")
|
||||
|
||||
_GLOBAL_MODELS_DICT: dict[str, "SentenceTransformer"] = {}
|
||||
_RERANK_MODELS: Optional[list["CrossEncoder"]] = None
|
||||
# If we are not only indexing, dont want retry very long
|
||||
_RETRY_DELAY = 10 if INDEXING_ONLY else 0.1
|
||||
_RETRY_TRIES = 10 if INDEXING_ONLY else 2
|
||||
|
||||
|
||||
def _initialize_client(
|
||||
api_key: str, provider: EmbeddingProvider, model: str | None = None
|
||||
) -> Any:
|
||||
if provider == EmbeddingProvider.OPENAI:
|
||||
return openai.OpenAI(api_key=api_key)
|
||||
elif provider == EmbeddingProvider.COHERE:
|
||||
return CohereClient(api_key=api_key)
|
||||
elif provider == EmbeddingProvider.VOYAGE:
|
||||
return voyageai.Client(api_key=api_key)
|
||||
elif provider == EmbeddingProvider.GOOGLE:
|
||||
credentials = service_account.Credentials.from_service_account_info(
|
||||
json.loads(api_key)
|
||||
)
|
||||
project_id = json.loads(api_key)["project_id"]
|
||||
vertexai.init(project=project_id, credentials=credentials)
|
||||
return TextEmbeddingModel.from_pretrained(model or DEFAULT_VERTEX_MODEL)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {provider}")
|
||||
|
||||
|
||||
class CloudEmbedding:
|
||||
def __init__(self, api_key: str, provider: str, model: str | None = None):
|
||||
self.api_key = api_key
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
provider: str,
|
||||
# Only for Google as is needed on client setup
|
||||
self.model = model
|
||||
model: str | None = None,
|
||||
) -> None:
|
||||
try:
|
||||
self.provider = EmbeddingProvider(provider.lower())
|
||||
except ValueError:
|
||||
raise ValueError(f"Unsupported provider: {provider}")
|
||||
self.client = self._initialize_client()
|
||||
|
||||
def _initialize_client(self) -> Any:
|
||||
if self.provider == EmbeddingProvider.OPENAI:
|
||||
return openai.OpenAI(api_key=self.api_key)
|
||||
elif self.provider == EmbeddingProvider.COHERE:
|
||||
return CohereClient(api_key=self.api_key)
|
||||
elif self.provider == EmbeddingProvider.VOYAGE:
|
||||
return voyageai.Client(api_key=self.api_key)
|
||||
elif self.provider == EmbeddingProvider.GOOGLE:
|
||||
credentials = service_account.Credentials.from_service_account_info(
|
||||
json.loads(self.api_key)
|
||||
)
|
||||
project_id = json.loads(self.api_key)["project_id"]
|
||||
vertexai.init(project=project_id, credentials=credentials)
|
||||
return TextEmbeddingModel.from_pretrained(
|
||||
self.model or DEFAULT_VERTEX_MODEL
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {self.provider}")
|
||||
|
||||
def encode(
|
||||
self, texts: list[str], model_name: str | None, text_type: EmbedTextType
|
||||
) -> list[list[float]]:
|
||||
return [
|
||||
self.embed(text=text, text_type=text_type, model=model_name)
|
||||
for text in texts
|
||||
]
|
||||
|
||||
def embed(
|
||||
self, *, text: str, text_type: EmbedTextType, model: str | None = None
|
||||
) -> list[float]:
|
||||
logger.debug(f"Embedding text with provider: {self.provider}")
|
||||
if self.provider == EmbeddingProvider.OPENAI:
|
||||
return self._embed_openai(text, model)
|
||||
|
||||
embedding_type = EmbeddingModelTextType.get_type(self.provider, text_type)
|
||||
|
||||
if self.provider == EmbeddingProvider.COHERE:
|
||||
return self._embed_cohere(text, model, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.VOYAGE:
|
||||
return self._embed_voyage(text, model, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.GOOGLE:
|
||||
return self._embed_vertex(text, model, embedding_type)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {self.provider}")
|
||||
self.client = _initialize_client(api_key, self.provider, model)
|
||||
|
||||
def _embed_openai(self, text: str, model: str | None) -> list[float]:
|
||||
if model is None:
|
||||
@@ -145,6 +126,62 @@ class CloudEmbedding:
|
||||
)
|
||||
return embedding[0].values
|
||||
|
||||
def _embed(
|
||||
self,
|
||||
*,
|
||||
text: str,
|
||||
text_type: EmbedTextType,
|
||||
model: str | None = None,
|
||||
) -> list[float]:
|
||||
try:
|
||||
if self.provider == EmbeddingProvider.OPENAI:
|
||||
return self._embed_openai(text, model)
|
||||
|
||||
embedding_type = EmbeddingModelTextType.get_type(self.provider, text_type)
|
||||
if self.provider == EmbeddingProvider.COHERE:
|
||||
return self._embed_cohere(text, model, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.VOYAGE:
|
||||
return self._embed_voyage(text, model, embedding_type)
|
||||
elif self.provider == EmbeddingProvider.GOOGLE:
|
||||
return self._embed_vertex(text, model, embedding_type)
|
||||
else:
|
||||
raise ValueError(f"Unsupported provider: {self.provider}")
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"Error embedding text with {self.provider}: {str(e)}",
|
||||
)
|
||||
|
||||
def encode(
|
||||
self,
|
||||
texts: list[str],
|
||||
model_name: str | None,
|
||||
text_type: EmbedTextType,
|
||||
) -> list[list[float]]:
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(
|
||||
self._embed,
|
||||
text=text,
|
||||
text_type=text_type,
|
||||
model=model_name,
|
||||
)
|
||||
for text in texts
|
||||
]
|
||||
|
||||
results = []
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
try:
|
||||
results.append(future.result())
|
||||
except Exception as e:
|
||||
# Cancel all pending futures
|
||||
for f in futures:
|
||||
f.cancel()
|
||||
# Raise the exception immediately
|
||||
raise e
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def create(
|
||||
api_key: str, provider: str, model: str | None = None
|
||||
@@ -204,6 +241,7 @@ def warm_up_cross_encoders() -> None:
|
||||
|
||||
|
||||
@simple_log_function_time()
|
||||
@retry(tries=_RETRY_TRIES, delay=_RETRY_DELAY)
|
||||
def embed_text(
|
||||
texts: list[str],
|
||||
text_type: EmbedTextType,
|
||||
@@ -212,29 +250,50 @@ def embed_text(
|
||||
normalize_embeddings: bool,
|
||||
api_key: str | None,
|
||||
provider_type: str | None,
|
||||
prefix: str | None,
|
||||
) -> list[list[float]]:
|
||||
if provider_type is not None:
|
||||
logger.debug(f"Embedding text with provider: {provider_type}")
|
||||
if api_key is None:
|
||||
raise RuntimeError("API key not provided for cloud model")
|
||||
|
||||
if prefix:
|
||||
# This may change in the future if some providers require the user
|
||||
# to manually append a prefix but this is not the case currently
|
||||
raise ValueError(
|
||||
"Prefix string is not valid for cloud models. "
|
||||
"Cloud models take an explicit text type instead."
|
||||
)
|
||||
|
||||
cloud_model = CloudEmbedding(
|
||||
api_key=api_key, provider=provider_type, model=model_name
|
||||
)
|
||||
embeddings = cloud_model.encode(texts, model_name, text_type)
|
||||
embeddings = cloud_model.encode(
|
||||
texts=texts,
|
||||
model_name=model_name,
|
||||
text_type=text_type,
|
||||
)
|
||||
|
||||
elif model_name is not None:
|
||||
prefixed_texts = [f"{prefix}{text}" for text in texts] if prefix else texts
|
||||
hosted_model = get_embedding_model(
|
||||
model_name=model_name, max_context_length=max_context_length
|
||||
)
|
||||
embeddings = hosted_model.encode(
|
||||
texts, normalize_embeddings=normalize_embeddings
|
||||
prefixed_texts, normalize_embeddings=normalize_embeddings
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
"Either model name or provider must be provided to run embeddings."
|
||||
)
|
||||
|
||||
if embeddings is None:
|
||||
raise RuntimeError("Embeddings were not created")
|
||||
raise RuntimeError("Failed to create Embeddings")
|
||||
|
||||
if not isinstance(embeddings, list):
|
||||
embeddings = embeddings.tolist()
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
@@ -253,6 +312,13 @@ async def process_embed_request(
|
||||
embed_request: EmbedRequest,
|
||||
) -> EmbedResponse:
|
||||
try:
|
||||
if embed_request.text_type == EmbedTextType.QUERY:
|
||||
prefix = embed_request.manual_query_prefix
|
||||
elif embed_request.text_type == EmbedTextType.PASSAGE:
|
||||
prefix = embed_request.manual_passage_prefix
|
||||
else:
|
||||
prefix = None
|
||||
|
||||
embeddings = embed_text(
|
||||
texts=embed_request.texts,
|
||||
model_name=embed_request.model_name,
|
||||
@@ -261,13 +327,13 @@ async def process_embed_request(
|
||||
api_key=embed_request.api_key,
|
||||
provider_type=embed_request.provider_type,
|
||||
text_type=embed_request.text_type,
|
||||
prefix=prefix,
|
||||
)
|
||||
return EmbedResponse(embeddings=embeddings)
|
||||
except Exception as e:
|
||||
logger.exception(f"Error during embedding process:\n{str(e)}")
|
||||
raise HTTPException(
|
||||
status_code=500, detail="Failed to run Bi-Encoder embedding"
|
||||
)
|
||||
exception_detail = f"Error during embedding process:\n{str(e)}"
|
||||
logger.exception(exception_detail)
|
||||
raise HTTPException(status_code=500, detail=exception_detail)
|
||||
|
||||
|
||||
@router.post("/cross-encoder-scores")
|
||||
|
Reference in New Issue
Block a user