pablodanswer 3a9b964d5c
Add Litellm Rerank proxy (#2346)
* add ability ot set reranking litellm proxy

* add fully functional rerank litellm cards

* minor formatting enforcement

* remove logs
2024-09-09 15:57:01 +00:00

474 lines
17 KiB
Python

import json
from typing import Any
from typing import Optional
import httpx
import openai
import vertexai # type: ignore
import voyageai # type: ignore
from cohere import Client as CohereClient
from fastapi import APIRouter
from fastapi import HTTPException
from google.oauth2 import service_account # type: ignore
from retry import retry
from sentence_transformers import CrossEncoder # type: ignore
from sentence_transformers import SentenceTransformer # type: ignore
from vertexai.language_models import TextEmbeddingInput # type: ignore
from vertexai.language_models import TextEmbeddingModel # type: ignore
from danswer.utils.logger import setup_logger
from model_server.constants import DEFAULT_COHERE_MODEL
from model_server.constants import DEFAULT_OPENAI_MODEL
from model_server.constants import DEFAULT_VERTEX_MODEL
from model_server.constants import DEFAULT_VOYAGE_MODEL
from model_server.constants import EmbeddingModelTextType
from model_server.constants import EmbeddingProvider
from model_server.utils import simple_log_function_time
from shared_configs.configs import INDEXING_ONLY
from shared_configs.enums import EmbedTextType
from shared_configs.enums import RerankerProvider
from shared_configs.model_server_models import Embedding
from shared_configs.model_server_models import EmbedRequest
from shared_configs.model_server_models import EmbedResponse
from shared_configs.model_server_models import RerankRequest
from shared_configs.model_server_models import RerankResponse
from shared_configs.utils import batch_list
logger = setup_logger()
router = APIRouter(prefix="/encoder")
_GLOBAL_MODELS_DICT: dict[str, "SentenceTransformer"] = {}
_RERANK_MODEL: Optional["CrossEncoder"] = None
# If we are not only indexing, dont want retry very long
_RETRY_DELAY = 10 if INDEXING_ONLY else 0.1
_RETRY_TRIES = 10 if INDEXING_ONLY else 2
# OpenAI only allows 2048 embeddings to be computed at once
_OPENAI_MAX_INPUT_LEN = 2048
# Cohere allows up to 96 embeddings in a single embedding calling
_COHERE_MAX_INPUT_LEN = 96
def _initialize_client(
api_key: str, provider: EmbeddingProvider, model: str | None = None
) -> Any:
if provider == EmbeddingProvider.OPENAI:
return openai.OpenAI(api_key=api_key)
elif provider == EmbeddingProvider.COHERE:
return CohereClient(api_key=api_key)
elif provider == EmbeddingProvider.VOYAGE:
return voyageai.Client(api_key=api_key)
elif provider == EmbeddingProvider.GOOGLE:
credentials = service_account.Credentials.from_service_account_info(
json.loads(api_key)
)
project_id = json.loads(api_key)["project_id"]
vertexai.init(project=project_id, credentials=credentials)
return TextEmbeddingModel.from_pretrained(model or DEFAULT_VERTEX_MODEL)
else:
raise ValueError(f"Unsupported provider: {provider}")
class CloudEmbedding:
def __init__(
self,
api_key: str,
provider: EmbeddingProvider,
# Only for Google as is needed on client setup
model: str | None = None,
) -> None:
self.provider = provider
self.client = _initialize_client(api_key, self.provider, model)
def _embed_openai(self, texts: list[str], model: str | None) -> list[Embedding]:
if not model:
model = DEFAULT_OPENAI_MODEL
# OpenAI does not seem to provide truncation option, however
# the context lengths used by Danswer currently are smaller than the max token length
# for OpenAI embeddings so it's not a big deal
final_embeddings: list[Embedding] = []
try:
for text_batch in batch_list(texts, _OPENAI_MAX_INPUT_LEN):
response = self.client.embeddings.create(input=text_batch, model=model)
final_embeddings.extend(
[embedding.embedding for embedding in response.data]
)
return final_embeddings
except Exception as e:
error_string = (
f"Error embedding text with OpenAI: {str(e)} \n"
f"Model: {model} \n"
f"Provider: {self.provider} \n"
f"Texts: {texts}"
)
logger.error(error_string)
raise RuntimeError(error_string)
def _embed_cohere(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[Embedding]:
if not model:
model = DEFAULT_COHERE_MODEL
final_embeddings: list[Embedding] = []
for text_batch in batch_list(texts, _COHERE_MAX_INPUT_LEN):
# Does not use the same tokenizer as the Danswer API server but it's approximately the same
# empirically it's only off by a very few tokens so it's not a big deal
response = self.client.embed(
texts=text_batch,
model=model,
input_type=embedding_type,
truncate="END",
)
final_embeddings.extend(response.embeddings)
return final_embeddings
def _embed_voyage(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[Embedding]:
if not model:
model = DEFAULT_VOYAGE_MODEL
# Similar to Cohere, the API server will do approximate size chunking
# it's acceptable to miss by a few tokens
response = self.client.embed(
texts,
model=model,
input_type=embedding_type,
truncation=True, # Also this is default
)
return response.embeddings
def _embed_vertex(
self, texts: list[str], model: str | None, embedding_type: str
) -> list[Embedding]:
if not model:
model = DEFAULT_VERTEX_MODEL
embeddings = self.client.get_embeddings(
[
TextEmbeddingInput(
text,
embedding_type,
)
for text in texts
],
auto_truncate=True, # Also this is default
)
return [embedding.values for embedding in embeddings]
@retry(tries=_RETRY_TRIES, delay=_RETRY_DELAY)
def embed(
self,
*,
texts: list[str],
text_type: EmbedTextType,
model_name: str | None = None,
) -> list[Embedding]:
try:
if self.provider == EmbeddingProvider.OPENAI:
return self._embed_openai(texts, model_name)
embedding_type = EmbeddingModelTextType.get_type(self.provider, text_type)
if self.provider == EmbeddingProvider.COHERE:
return self._embed_cohere(texts, model_name, embedding_type)
elif self.provider == EmbeddingProvider.VOYAGE:
return self._embed_voyage(texts, model_name, embedding_type)
elif self.provider == EmbeddingProvider.GOOGLE:
return self._embed_vertex(texts, model_name, embedding_type)
else:
raise ValueError(f"Unsupported provider: {self.provider}")
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error embedding text with {self.provider}: {str(e)}",
)
@staticmethod
def create(
api_key: str, provider: EmbeddingProvider, model: str | None = None
) -> "CloudEmbedding":
logger.debug(f"Creating Embedding instance for provider: {provider}")
return CloudEmbedding(api_key, provider, model)
def get_embedding_model(
model_name: str,
max_context_length: int,
) -> "SentenceTransformer":
from sentence_transformers import SentenceTransformer # type: ignore
global _GLOBAL_MODELS_DICT # A dictionary to store models
if _GLOBAL_MODELS_DICT is None:
_GLOBAL_MODELS_DICT = {}
if model_name not in _GLOBAL_MODELS_DICT:
logger.notice(f"Loading {model_name}")
# Some model architectures that aren't built into the Transformers or Sentence
# Transformer need to be downloaded to be loaded locally. This does not mean
# data is sent to remote servers for inference, however the remote code can
# be fairly arbitrary so only use trusted models
model = SentenceTransformer(
model_name_or_path=model_name,
trust_remote_code=True,
)
model.max_seq_length = max_context_length
_GLOBAL_MODELS_DICT[model_name] = model
elif max_context_length != _GLOBAL_MODELS_DICT[model_name].max_seq_length:
_GLOBAL_MODELS_DICT[model_name].max_seq_length = max_context_length
return _GLOBAL_MODELS_DICT[model_name]
def get_local_reranking_model(
model_name: str,
) -> CrossEncoder:
global _RERANK_MODEL
if _RERANK_MODEL is None:
logger.notice(f"Loading {model_name}")
model = CrossEncoder(model_name)
_RERANK_MODEL = model
return _RERANK_MODEL
def embed_with_litellm_proxy(
texts: list[str], api_url: str, model_name: str, api_key: str | None
) -> list[Embedding]:
headers = {} if not api_key else {"Authorization": f"Bearer {api_key}"}
with httpx.Client() as client:
response = client.post(
api_url,
json={
"model": model_name,
"input": texts,
},
headers=headers,
)
response.raise_for_status()
result = response.json()
return [embedding["embedding"] for embedding in result["data"]]
@simple_log_function_time()
def embed_text(
texts: list[str],
text_type: EmbedTextType,
model_name: str | None,
max_context_length: int,
normalize_embeddings: bool,
api_key: str | None,
provider_type: EmbeddingProvider | None,
prefix: str | None,
api_url: str | None,
) -> list[Embedding]:
logger.info(f"Embedding {len(texts)} texts with provider: {provider_type}")
if not all(texts):
logger.error("Empty strings provided for embedding")
raise ValueError("Empty strings are not allowed for embedding.")
if not texts:
logger.error("No texts provided for embedding")
raise ValueError("No texts provided for embedding.")
if provider_type == EmbeddingProvider.LITELLM:
logger.debug(f"Using LiteLLM proxy for embedding with URL: {api_url}")
if not api_url:
logger.error("API URL not provided for LiteLLM proxy")
raise ValueError("API URL is required for LiteLLM proxy embedding.")
try:
return embed_with_litellm_proxy(
texts=texts,
api_url=api_url,
model_name=model_name or "",
api_key=api_key,
)
except Exception as e:
logger.exception(f"Error during LiteLLM proxy embedding: {str(e)}")
raise
elif provider_type is not None:
logger.debug(f"Using cloud provider {provider_type} for embedding")
if api_key is None:
logger.error("API key not provided for cloud model")
raise RuntimeError("API key not provided for cloud model")
if prefix:
logger.warning("Prefix provided for cloud model, which is not supported")
raise ValueError(
"Prefix string is not valid for cloud models. "
"Cloud models take an explicit text type instead."
)
cloud_model = CloudEmbedding(
api_key=api_key, provider=provider_type, model=model_name
)
embeddings = cloud_model.embed(
texts=texts,
model_name=model_name,
text_type=text_type,
)
if any(embedding is None for embedding in embeddings):
error_message = "Embeddings contain None values\n"
error_message += "Corresponding texts:\n"
error_message += "\n".join(texts)
logger.error(error_message)
raise ValueError(error_message)
elif model_name is not None:
logger.debug(f"Using local model {model_name} for embedding")
prefixed_texts = [f"{prefix}{text}" for text in texts] if prefix else texts
local_model = get_embedding_model(
model_name=model_name, max_context_length=max_context_length
)
embeddings_vectors = local_model.encode(
prefixed_texts, normalize_embeddings=normalize_embeddings
)
embeddings = [
embedding if isinstance(embedding, list) else embedding.tolist()
for embedding in embeddings_vectors
]
else:
logger.error("Neither model name nor provider specified for embedding")
raise ValueError(
"Either model name or provider must be provided to run embeddings."
)
logger.info(f"Successfully embedded {len(texts)} texts")
return embeddings
@simple_log_function_time()
def local_rerank(query: str, docs: list[str], model_name: str) -> list[float]:
cross_encoder = get_local_reranking_model(model_name)
return cross_encoder.predict([(query, doc) for doc in docs]).tolist() # type: ignore
def cohere_rerank(
query: str, docs: list[str], model_name: str, api_key: str
) -> list[float]:
cohere_client = CohereClient(api_key=api_key)
response = cohere_client.rerank(query=query, documents=docs, model=model_name)
results = response.results
sorted_results = sorted(results, key=lambda item: item.index)
return [result.relevance_score for result in sorted_results]
def litellm_rerank(
query: str, docs: list[str], api_url: str, model_name: str, api_key: str | None
) -> list[float]:
headers = {} if not api_key else {"Authorization": f"Bearer {api_key}"}
with httpx.Client() as client:
response = client.post(
api_url,
json={
"model": model_name,
"query": query,
"documents": docs,
},
headers=headers,
)
response.raise_for_status()
result = response.json()
return [
item["relevance_score"]
for item in sorted(result["results"], key=lambda x: x["index"])
]
@router.post("/bi-encoder-embed")
async def process_embed_request(
embed_request: EmbedRequest,
) -> EmbedResponse:
if not embed_request.texts:
raise HTTPException(status_code=400, detail="No texts to be embedded")
elif not all(embed_request.texts):
raise ValueError("Empty strings are not allowed for embedding.")
try:
if embed_request.text_type == EmbedTextType.QUERY:
prefix = embed_request.manual_query_prefix
elif embed_request.text_type == EmbedTextType.PASSAGE:
prefix = embed_request.manual_passage_prefix
else:
prefix = None
embeddings = embed_text(
texts=embed_request.texts,
model_name=embed_request.model_name,
max_context_length=embed_request.max_context_length,
normalize_embeddings=embed_request.normalize_embeddings,
api_key=embed_request.api_key,
provider_type=embed_request.provider_type,
text_type=embed_request.text_type,
api_url=embed_request.api_url,
prefix=prefix,
)
return EmbedResponse(embeddings=embeddings)
except Exception as e:
exception_detail = f"Error during embedding process:\n{str(e)}"
logger.exception(exception_detail)
raise HTTPException(status_code=500, detail=exception_detail)
@router.post("/cross-encoder-scores")
async def process_rerank_request(rerank_request: RerankRequest) -> RerankResponse:
"""Cross encoders can be purely black box from the app perspective"""
if INDEXING_ONLY:
raise RuntimeError("Indexing model server should not call intent endpoint")
if not rerank_request.documents or not rerank_request.query:
raise HTTPException(
status_code=400, detail="Missing documents or query for reranking"
)
if not all(rerank_request.documents):
raise ValueError("Empty documents cannot be reranked.")
try:
if rerank_request.provider_type is None:
sim_scores = local_rerank(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
)
return RerankResponse(scores=sim_scores)
elif rerank_request.provider_type == RerankerProvider.LITELLM:
if rerank_request.api_url is None:
raise ValueError("API URL is required for LiteLLM reranking.")
sim_scores = litellm_rerank(
query=rerank_request.query,
docs=rerank_request.documents,
api_url=rerank_request.api_url,
model_name=rerank_request.model_name,
api_key=rerank_request.api_key,
)
return RerankResponse(scores=sim_scores)
elif rerank_request.provider_type == RerankerProvider.COHERE:
if rerank_request.api_key is None:
raise RuntimeError("Cohere Rerank Requires an API Key")
sim_scores = cohere_rerank(
query=rerank_request.query,
docs=rerank_request.documents,
model_name=rerank_request.model_name,
api_key=rerank_request.api_key,
)
return RerankResponse(scores=sim_scores)
else:
raise ValueError(f"Unsupported provider: {rerank_request.provider_type}")
except Exception as e:
logger.exception(f"Error during reranking process:\n{str(e)}")
raise HTTPException(
status_code=500, detail="Failed to run Cross-Encoder reranking"
)