mirror of
https://github.com/danswer-ai/danswer.git
synced 2025-04-04 09:58:32 +02:00
360 lines
12 KiB
Python
360 lines
12 KiB
Python
import datetime
|
|
from collections.abc import Sequence
|
|
from uuid import UUID
|
|
|
|
from sqlalchemy import and_
|
|
from sqlalchemy import case
|
|
from sqlalchemy import cast
|
|
from sqlalchemy import Date
|
|
from sqlalchemy import func
|
|
from sqlalchemy import or_
|
|
from sqlalchemy import select
|
|
from sqlalchemy.orm import Session
|
|
|
|
from onyx.configs.constants import MessageType
|
|
from onyx.db.models import ChatMessage
|
|
from onyx.db.models import ChatMessageFeedback
|
|
from onyx.db.models import ChatSession
|
|
from onyx.db.models import Persona
|
|
from onyx.db.models import User
|
|
from onyx.db.models import UserRole
|
|
|
|
|
|
def fetch_query_analytics(
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
db_session: Session,
|
|
) -> Sequence[tuple[int, int, int, datetime.date]]:
|
|
stmt = (
|
|
select(
|
|
func.count(ChatMessage.id),
|
|
func.sum(case((ChatMessageFeedback.is_positive, 1), else_=0)),
|
|
func.sum(
|
|
case(
|
|
(ChatMessageFeedback.is_positive == False, 1), else_=0 # noqa: E712
|
|
)
|
|
),
|
|
cast(ChatMessage.time_sent, Date),
|
|
)
|
|
.join(
|
|
ChatMessageFeedback,
|
|
ChatMessageFeedback.chat_message_id == ChatMessage.id,
|
|
isouter=True,
|
|
)
|
|
.where(
|
|
ChatMessage.time_sent >= start,
|
|
)
|
|
.where(
|
|
ChatMessage.time_sent <= end,
|
|
)
|
|
.where(ChatMessage.message_type == MessageType.ASSISTANT)
|
|
.group_by(cast(ChatMessage.time_sent, Date))
|
|
.order_by(cast(ChatMessage.time_sent, Date))
|
|
)
|
|
|
|
return db_session.execute(stmt).all() # type: ignore
|
|
|
|
|
|
def fetch_per_user_query_analytics(
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
db_session: Session,
|
|
) -> Sequence[tuple[int, int, int, datetime.date, UUID]]:
|
|
stmt = (
|
|
select(
|
|
func.count(ChatMessage.id),
|
|
func.sum(case((ChatMessageFeedback.is_positive, 1), else_=0)),
|
|
func.sum(
|
|
case(
|
|
(ChatMessageFeedback.is_positive == False, 1), else_=0 # noqa: E712
|
|
)
|
|
),
|
|
cast(ChatMessage.time_sent, Date),
|
|
ChatSession.user_id,
|
|
)
|
|
.join(ChatSession, ChatSession.id == ChatMessage.chat_session_id)
|
|
.where(
|
|
ChatMessage.time_sent >= start,
|
|
)
|
|
.where(
|
|
ChatMessage.time_sent <= end,
|
|
)
|
|
.where(ChatMessage.message_type == MessageType.ASSISTANT)
|
|
.group_by(cast(ChatMessage.time_sent, Date), ChatSession.user_id)
|
|
.order_by(cast(ChatMessage.time_sent, Date), ChatSession.user_id)
|
|
)
|
|
|
|
return db_session.execute(stmt).all() # type: ignore
|
|
|
|
|
|
def fetch_onyxbot_analytics(
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
db_session: Session,
|
|
) -> Sequence[tuple[int, int, datetime.date]]:
|
|
"""Gets the:
|
|
Date of each set of aggregated statistics
|
|
Number of OnyxBot Queries (Chat Sessions)
|
|
Number of instances of Negative feedback OR Needing additional help
|
|
(only counting the last feedback)
|
|
"""
|
|
# Get every chat session in the time range which is a Onyxbot flow
|
|
# along with the first Assistant message which is the response to the user question.
|
|
# Generally there should not be more than one AI message per chat session of this type
|
|
subquery_first_ai_response = (
|
|
db_session.query(
|
|
ChatMessage.chat_session_id.label("chat_session_id"),
|
|
func.min(ChatMessage.id).label("chat_message_id"),
|
|
)
|
|
.join(ChatSession, ChatSession.id == ChatMessage.chat_session_id)
|
|
.where(
|
|
ChatSession.time_created >= start,
|
|
ChatSession.time_created <= end,
|
|
ChatSession.onyxbot_flow.is_(True),
|
|
)
|
|
.where(
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
.group_by(ChatMessage.chat_session_id)
|
|
.subquery()
|
|
)
|
|
|
|
# Get the chat message ids and most recent feedback for each of those chat messages,
|
|
# not including the messages that have no feedback
|
|
subquery_last_feedback = (
|
|
db_session.query(
|
|
ChatMessageFeedback.chat_message_id.label("chat_message_id"),
|
|
func.max(ChatMessageFeedback.id).label("max_feedback_id"),
|
|
)
|
|
.group_by(ChatMessageFeedback.chat_message_id)
|
|
.subquery()
|
|
)
|
|
|
|
results = (
|
|
db_session.query(
|
|
func.count(ChatSession.id).label("total_sessions"),
|
|
# Need to explicitly specify this as False to handle the NULL case so the cases without
|
|
# feedback aren't counted against Onyxbot
|
|
func.sum(
|
|
case(
|
|
(
|
|
or_(
|
|
ChatMessageFeedback.is_positive.is_(False),
|
|
ChatMessageFeedback.required_followup,
|
|
),
|
|
1,
|
|
),
|
|
else_=0,
|
|
)
|
|
).label("negative_answer"),
|
|
cast(ChatSession.time_created, Date).label("session_date"),
|
|
)
|
|
.join(
|
|
subquery_first_ai_response,
|
|
ChatSession.id == subquery_first_ai_response.c.chat_session_id,
|
|
)
|
|
# Combine the chat sessions with latest feedback to get the latest feedback for the first AI
|
|
# message of the chat session where the chat session is Onyxbot type and within the time
|
|
# range specified. Left/outer join used here to ensure that if no feedback, a null is used
|
|
# for the feedback id
|
|
.outerjoin(
|
|
subquery_last_feedback,
|
|
subquery_first_ai_response.c.chat_message_id
|
|
== subquery_last_feedback.c.chat_message_id,
|
|
)
|
|
# Join the actual feedback table to get the feedback info for the sums
|
|
# Outer join because the "last feedback" may be null
|
|
.outerjoin(
|
|
ChatMessageFeedback,
|
|
ChatMessageFeedback.id == subquery_last_feedback.c.max_feedback_id,
|
|
)
|
|
.group_by(cast(ChatSession.time_created, Date))
|
|
.order_by(cast(ChatSession.time_created, Date))
|
|
.all()
|
|
)
|
|
|
|
return results
|
|
|
|
|
|
def fetch_persona_message_analytics(
|
|
db_session: Session,
|
|
persona_id: int,
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
) -> list[tuple[int, datetime.date]]:
|
|
"""Gets the daily message counts for a specific persona within the given time range."""
|
|
query = (
|
|
select(
|
|
func.count(ChatMessage.id),
|
|
cast(ChatMessage.time_sent, Date),
|
|
)
|
|
.join(
|
|
ChatSession,
|
|
ChatMessage.chat_session_id == ChatSession.id,
|
|
)
|
|
.where(
|
|
or_(
|
|
ChatMessage.alternate_assistant_id == persona_id,
|
|
ChatSession.persona_id == persona_id,
|
|
),
|
|
ChatMessage.time_sent >= start,
|
|
ChatMessage.time_sent <= end,
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
.group_by(cast(ChatMessage.time_sent, Date))
|
|
.order_by(cast(ChatMessage.time_sent, Date))
|
|
)
|
|
|
|
return [tuple(row) for row in db_session.execute(query).all()]
|
|
|
|
|
|
def fetch_persona_unique_users(
|
|
db_session: Session,
|
|
persona_id: int,
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
) -> list[tuple[int, datetime.date]]:
|
|
"""Gets the daily unique user counts for a specific persona within the given time range."""
|
|
query = (
|
|
select(
|
|
func.count(func.distinct(ChatSession.user_id)),
|
|
cast(ChatMessage.time_sent, Date),
|
|
)
|
|
.join(
|
|
ChatSession,
|
|
ChatMessage.chat_session_id == ChatSession.id,
|
|
)
|
|
.where(
|
|
or_(
|
|
ChatMessage.alternate_assistant_id == persona_id,
|
|
ChatSession.persona_id == persona_id,
|
|
),
|
|
ChatMessage.time_sent >= start,
|
|
ChatMessage.time_sent <= end,
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
.group_by(cast(ChatMessage.time_sent, Date))
|
|
.order_by(cast(ChatMessage.time_sent, Date))
|
|
)
|
|
|
|
return [tuple(row) for row in db_session.execute(query).all()]
|
|
|
|
|
|
def fetch_assistant_message_analytics(
|
|
db_session: Session,
|
|
assistant_id: int,
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
) -> list[tuple[int, datetime.date]]:
|
|
"""
|
|
Gets the daily message counts for a specific assistant in the given time range.
|
|
"""
|
|
query = (
|
|
select(
|
|
func.count(ChatMessage.id),
|
|
cast(ChatMessage.time_sent, Date),
|
|
)
|
|
.join(
|
|
ChatSession,
|
|
ChatMessage.chat_session_id == ChatSession.id,
|
|
)
|
|
.where(
|
|
or_(
|
|
ChatMessage.alternate_assistant_id == assistant_id,
|
|
ChatSession.persona_id == assistant_id,
|
|
),
|
|
ChatMessage.time_sent >= start,
|
|
ChatMessage.time_sent <= end,
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
.group_by(cast(ChatMessage.time_sent, Date))
|
|
.order_by(cast(ChatMessage.time_sent, Date))
|
|
)
|
|
|
|
return [tuple(row) for row in db_session.execute(query).all()]
|
|
|
|
|
|
def fetch_assistant_unique_users(
|
|
db_session: Session,
|
|
assistant_id: int,
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
) -> list[tuple[int, datetime.date]]:
|
|
"""
|
|
Gets the daily unique user counts for a specific assistant in the given time range.
|
|
"""
|
|
query = (
|
|
select(
|
|
func.count(func.distinct(ChatSession.user_id)),
|
|
cast(ChatMessage.time_sent, Date),
|
|
)
|
|
.join(
|
|
ChatSession,
|
|
ChatMessage.chat_session_id == ChatSession.id,
|
|
)
|
|
.where(
|
|
or_(
|
|
ChatMessage.alternate_assistant_id == assistant_id,
|
|
ChatSession.persona_id == assistant_id,
|
|
),
|
|
ChatMessage.time_sent >= start,
|
|
ChatMessage.time_sent <= end,
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
.group_by(cast(ChatMessage.time_sent, Date))
|
|
.order_by(cast(ChatMessage.time_sent, Date))
|
|
)
|
|
|
|
return [tuple(row) for row in db_session.execute(query).all()]
|
|
|
|
|
|
def fetch_assistant_unique_users_total(
|
|
db_session: Session,
|
|
assistant_id: int,
|
|
start: datetime.datetime,
|
|
end: datetime.datetime,
|
|
) -> int:
|
|
"""
|
|
Gets the total number of distinct users who have sent or received messages from
|
|
the specified assistant in the given time range.
|
|
"""
|
|
query = (
|
|
select(func.count(func.distinct(ChatSession.user_id)))
|
|
.select_from(ChatMessage)
|
|
.join(
|
|
ChatSession,
|
|
ChatMessage.chat_session_id == ChatSession.id,
|
|
)
|
|
.where(
|
|
or_(
|
|
ChatMessage.alternate_assistant_id == assistant_id,
|
|
ChatSession.persona_id == assistant_id,
|
|
),
|
|
ChatMessage.time_sent >= start,
|
|
ChatMessage.time_sent <= end,
|
|
ChatMessage.message_type == MessageType.ASSISTANT,
|
|
)
|
|
)
|
|
|
|
result = db_session.execute(query).scalar()
|
|
return result if result else 0
|
|
|
|
|
|
# Users can view assistant stats if they created the persona,
|
|
# or if they are an admin
|
|
def user_can_view_assistant_stats(
|
|
db_session: Session, user: User | None, assistant_id: int
|
|
) -> bool:
|
|
# If user is None and auth is disabled, assume the user is an admin
|
|
|
|
if user is None or user.role == UserRole.ADMIN:
|
|
return True
|
|
|
|
# Check if the user created the persona
|
|
stmt = select(Persona).where(
|
|
and_(Persona.id == assistant_id, Persona.user_id == user.id)
|
|
)
|
|
|
|
persona = db_session.execute(stmt).scalar_one_or_none()
|
|
return persona is not None
|