danswer/backend/shared_configs/model_server_models.py
pablodanswer 299cb5035c
Add litellm proxy embeddings (#2291)
* add litellm proxy

* formatting

* move `api_url` to cloud provider + nits

* remove log

* typing

* quick tuyping fix

* update LiteLLM selection logic

* remove logs + validate functionality

* rename proxy var

* update path casing

* remove pricing for custom models

* functional values
2024-09-02 09:08:35 -07:00

57 lines
1.5 KiB
Python

from pydantic import BaseModel
from shared_configs.enums import EmbeddingProvider
from shared_configs.enums import EmbedTextType
from shared_configs.enums import RerankerProvider
Embedding = list[float]
class EmbedRequest(BaseModel):
texts: list[str]
# Can be none for cloud embedding model requests, error handling logic exists for other cases
model_name: str | None = None
max_context_length: int
normalize_embeddings: bool
api_key: str | None = None
provider_type: EmbeddingProvider | None = None
text_type: EmbedTextType
manual_query_prefix: str | None = None
manual_passage_prefix: str | None = None
api_url: str | None = None
# This disables the "model_" protected namespace for pydantic
model_config = {"protected_namespaces": ()}
class EmbedResponse(BaseModel):
embeddings: list[Embedding]
class RerankRequest(BaseModel):
query: str
documents: list[str]
model_name: str
provider_type: RerankerProvider | None = None
api_key: str | None = None
# This disables the "model_" protected namespace for pydantic
model_config = {"protected_namespaces": ()}
class RerankResponse(BaseModel):
scores: list[float]
class IntentRequest(BaseModel):
query: str
# Sequence classification threshold
semantic_percent_threshold: float
# Token classification threshold
keyword_percent_threshold: float
class IntentResponse(BaseModel):
is_keyword: bool
keywords: list[str]