danswer/backend/tests/daily/embedding/test_embeddings.py
rkuo-danswer 60bd9271f7
Bugfix/model tests (#4092)
* trying out a fix

* add ability to manually run model tests

* add log dump

* check status code, not text?

* just the model server

* add port mapping to host

* pass through more api keys

* add azure tests

* fix litellm env vars

* fix env vars in github workflow

* temp disable litellm test

---------

Co-authored-by: Richard Kuo (Danswer) <rkuo@onyx.app>
2025-02-25 04:53:51 +00:00

148 lines
5.1 KiB
Python

import os
import pytest
from onyx.natural_language_processing.search_nlp_models import EmbeddingModel
from shared_configs.enums import EmbedTextType
from shared_configs.model_server_models import EmbeddingProvider
VALID_SAMPLE = ["hi", "hello my name is bob", "woah there!!!. 😃"]
VALID_LONG_SAMPLE = ["hi " * 999]
# openai limit is 2048, cohere is supposed to be 96 but in practice that doesn't
# seem to be true
TOO_LONG_SAMPLE = ["a"] * 2500
def _run_embeddings(
texts: list[str], embedding_model: EmbeddingModel, expected_dim: int
) -> None:
for text_type in [EmbedTextType.QUERY, EmbedTextType.PASSAGE]:
embeddings = embedding_model.encode(texts, text_type)
assert len(embeddings) == len(texts)
assert len(embeddings[0]) == expected_dim
@pytest.fixture
def openai_embedding_model() -> EmbeddingModel:
return EmbeddingModel(
server_host="localhost",
server_port=9000,
model_name="text-embedding-3-small",
normalize=True,
query_prefix=None,
passage_prefix=None,
api_key=os.getenv("OPENAI_API_KEY"),
provider_type=EmbeddingProvider.OPENAI,
api_url=None,
)
def test_openai_embedding(openai_embedding_model: EmbeddingModel) -> None:
_run_embeddings(VALID_SAMPLE, openai_embedding_model, 1536)
_run_embeddings(TOO_LONG_SAMPLE, openai_embedding_model, 1536)
@pytest.fixture
def cohere_embedding_model() -> EmbeddingModel:
return EmbeddingModel(
server_host="localhost",
server_port=9000,
model_name="embed-english-light-v3.0",
normalize=True,
query_prefix=None,
passage_prefix=None,
api_key=os.getenv("COHERE_API_KEY"),
provider_type=EmbeddingProvider.COHERE,
api_url=None,
)
def test_cohere_embedding(cohere_embedding_model: EmbeddingModel) -> None:
_run_embeddings(VALID_SAMPLE, cohere_embedding_model, 384)
_run_embeddings(TOO_LONG_SAMPLE, cohere_embedding_model, 384)
@pytest.fixture
def litellm_embedding_model() -> EmbeddingModel:
return EmbeddingModel(
server_host="localhost",
server_port=9000,
model_name="text-embedding-3-small",
normalize=True,
query_prefix=None,
passage_prefix=None,
api_key=os.getenv("LITELLM_API_KEY"),
provider_type=EmbeddingProvider.LITELLM,
api_url=os.getenv("LITELLM_API_URL"),
)
@pytest.mark.skip(reason="re-enable when we can get the correct litellm key and url")
def test_litellm_embedding(litellm_embedding_model: EmbeddingModel) -> None:
_run_embeddings(VALID_SAMPLE, litellm_embedding_model, 1536)
_run_embeddings(TOO_LONG_SAMPLE, litellm_embedding_model, 1536)
@pytest.fixture
def local_nomic_embedding_model() -> EmbeddingModel:
return EmbeddingModel(
server_host="localhost",
server_port=9000,
model_name="nomic-ai/nomic-embed-text-v1",
normalize=True,
query_prefix="search_query: ",
passage_prefix="search_document: ",
api_key=None,
provider_type=None,
api_url=None,
)
def test_local_nomic_embedding(local_nomic_embedding_model: EmbeddingModel) -> None:
_run_embeddings(VALID_SAMPLE, local_nomic_embedding_model, 768)
_run_embeddings(TOO_LONG_SAMPLE, local_nomic_embedding_model, 768)
@pytest.fixture
def azure_embedding_model() -> EmbeddingModel:
return EmbeddingModel(
server_host="localhost",
server_port=9000,
model_name="text-embedding-3-large",
normalize=True,
query_prefix=None,
passage_prefix=None,
api_key=os.getenv("AZURE_API_KEY"),
provider_type=EmbeddingProvider.AZURE,
api_url=os.getenv("AZURE_API_URL"),
)
def test_azure_embedding(azure_embedding_model: EmbeddingModel) -> None:
_run_embeddings(VALID_SAMPLE, azure_embedding_model, 1536)
_run_embeddings(TOO_LONG_SAMPLE, azure_embedding_model, 1536)
# NOTE (chris): this test doesn't work, and I do not know why
# def test_azure_embedding_model_rate_limit(azure_embedding_model: EmbeddingModel):
# """NOTE: this test relies on a very low rate limit for the Azure API +
# this test only being run once in a 1 minute window"""
# # VALID_LONG_SAMPLE is 999 tokens, so the second call should run into rate
# # limits assuming the limit is 1000 tokens per minute
# result = azure_embedding_model.encode(VALID_LONG_SAMPLE, EmbedTextType.QUERY)
# assert len(result) == 1
# assert len(result[0]) == 1536
# # this should fail
# with pytest.raises(ModelServerRateLimitError):
# azure_embedding_model.encode(VALID_LONG_SAMPLE, EmbedTextType.QUERY)
# azure_embedding_model.encode(VALID_LONG_SAMPLE, EmbedTextType.QUERY)
# azure_embedding_model.encode(VALID_LONG_SAMPLE, EmbedTextType.QUERY)
# # this should succeed, since passage requests retry up to 10 times
# start = time.time()
# result = azure_embedding_model.encode(VALID_LONG_SAMPLE, EmbedTextType.PASSAGE)
# assert len(result) == 1
# assert len(result[0]) == 1536
# assert time.time() - start > 30 # make sure we waited, even though we hit rate limits