joachim-danswer 463340b8a1
Reduce ranking scores for short chunks without actual information (#4098)
* remove title for slack

* initial working code

* simplification

* improvements

* name change to information_content_model

* avoid boost_score > 1.0

* nit

* EL comments and improvements

Improvements:
  - proper import of information content model from cache or HF
  - warm up for information content model

Other:
  - EL PR review comments

* nit

* requirements version update

* fixed docker file

* new home for model_server configs

* default off

* small updates

* YS comments - pt 1

* renaming to chunk_boost & chunk table def

* saving and deleting chunk stats in new table

* saving and updating chunk stats

* improved dict score update

* create columns for individual boost factors

* RK comments

* Update migration

* manual import reordering
2025-03-13 17:35:45 +00:00

38 lines
1.1 KiB
Python

from shared_configs.enums import EmbeddingProvider
from shared_configs.enums import EmbedTextType
MODEL_WARM_UP_STRING = "hi " * 512
INFORMATION_CONTENT_MODEL_WARM_UP_STRING = "hi " * 16
DEFAULT_OPENAI_MODEL = "text-embedding-3-small"
DEFAULT_COHERE_MODEL = "embed-english-light-v3.0"
DEFAULT_VOYAGE_MODEL = "voyage-large-2-instruct"
DEFAULT_VERTEX_MODEL = "text-embedding-005"
class EmbeddingModelTextType:
PROVIDER_TEXT_TYPE_MAP = {
EmbeddingProvider.COHERE: {
EmbedTextType.QUERY: "search_query",
EmbedTextType.PASSAGE: "search_document",
},
EmbeddingProvider.VOYAGE: {
EmbedTextType.QUERY: "query",
EmbedTextType.PASSAGE: "document",
},
EmbeddingProvider.GOOGLE: {
EmbedTextType.QUERY: "RETRIEVAL_QUERY",
EmbedTextType.PASSAGE: "RETRIEVAL_DOCUMENT",
},
}
@staticmethod
def get_type(provider: EmbeddingProvider, text_type: EmbedTextType) -> str:
return EmbeddingModelTextType.PROVIDER_TEXT_TYPE_MAP[provider][text_type]
class GPUStatus:
CUDA = "cuda"
MAC_MPS = "mps"
NONE = "none"