joachim-danswer 463340b8a1
Reduce ranking scores for short chunks without actual information (#4098)
* remove title for slack

* initial working code

* simplification

* improvements

* name change to information_content_model

* avoid boost_score > 1.0

* nit

* EL comments and improvements

Improvements:
  - proper import of information content model from cache or HF
  - warm up for information content model

Other:
  - EL PR review comments

* nit

* requirements version update

* fixed docker file

* new home for model_server configs

* default off

* small updates

* YS comments - pt 1

* renaming to chunk_boost & chunk table def

* saving and deleting chunk stats in new table

* saving and updating chunk stats

* improved dict score update

* create columns for individual boost factors

* RK comments

* Update migration

* manual import reordering
2025-03-13 17:35:45 +00:00

121 lines
4.2 KiB
Python

import os
import shutil
from collections.abc import AsyncGenerator
from contextlib import asynccontextmanager
from pathlib import Path
import sentry_sdk
import torch
import uvicorn
from fastapi import FastAPI
from sentry_sdk.integrations.fastapi import FastApiIntegration
from sentry_sdk.integrations.starlette import StarletteIntegration
from transformers import logging as transformer_logging # type:ignore
from model_server.custom_models import router as custom_models_router
from model_server.custom_models import warm_up_information_content_model
from model_server.custom_models import warm_up_intent_model
from model_server.encoders import router as encoders_router
from model_server.management_endpoints import router as management_router
from model_server.utils import get_gpu_type
from onyx import __version__
from onyx.utils.logger import setup_logger
from shared_configs.configs import INDEXING_ONLY
from shared_configs.configs import MIN_THREADS_ML_MODELS
from shared_configs.configs import MODEL_SERVER_ALLOWED_HOST
from shared_configs.configs import MODEL_SERVER_PORT
from shared_configs.configs import SENTRY_DSN
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
HF_CACHE_PATH = Path(os.path.expanduser("~")) / ".cache/huggingface"
TEMP_HF_CACHE_PATH = Path(os.path.expanduser("~")) / ".cache/temp_huggingface"
transformer_logging.set_verbosity_error()
logger = setup_logger()
def _move_files_recursively(source: Path, dest: Path, overwrite: bool = False) -> None:
"""
This moves the files from the temp huggingface cache to the huggingface cache
We have to move each file individually because the directories might
have the same name but not the same contents and we dont want to remove
the files in the existing huggingface cache that don't exist in the temp
huggingface cache.
"""
for item in source.iterdir():
target_path = dest / item.relative_to(source)
if item.is_dir():
_move_files_recursively(item, target_path, overwrite)
else:
target_path.parent.mkdir(parents=True, exist_ok=True)
if target_path.exists() and not overwrite:
continue
shutil.move(str(item), str(target_path))
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator:
gpu_type = get_gpu_type()
logger.notice(f"Torch GPU Detection: gpu_type={gpu_type}")
app.state.gpu_type = gpu_type
if TEMP_HF_CACHE_PATH.is_dir():
logger.notice("Moving contents of temp_huggingface to huggingface cache.")
_move_files_recursively(TEMP_HF_CACHE_PATH, HF_CACHE_PATH)
shutil.rmtree(TEMP_HF_CACHE_PATH, ignore_errors=True)
logger.notice("Moved contents of temp_huggingface to huggingface cache.")
torch.set_num_threads(max(MIN_THREADS_ML_MODELS, torch.get_num_threads()))
logger.notice(f"Torch Threads: {torch.get_num_threads()}")
if not INDEXING_ONLY:
logger.notice(
"The intent model should run on the model server. The information content model should not run here."
)
warm_up_intent_model()
else:
logger.notice(
"The content information model should run on the indexing model server. The intent model should not run here."
)
warm_up_information_content_model()
yield
def get_model_app() -> FastAPI:
application = FastAPI(
title="Onyx Model Server", version=__version__, lifespan=lifespan
)
if SENTRY_DSN:
sentry_sdk.init(
dsn=SENTRY_DSN,
integrations=[StarletteIntegration(), FastApiIntegration()],
traces_sample_rate=0.1,
)
logger.info("Sentry initialized")
else:
logger.debug("Sentry DSN not provided, skipping Sentry initialization")
application.include_router(management_router)
application.include_router(encoders_router)
application.include_router(custom_models_router)
return application
app = get_model_app()
if __name__ == "__main__":
logger.notice(
f"Starting Onyx Model Server on http://{MODEL_SERVER_ALLOWED_HOST}:{str(MODEL_SERVER_PORT)}/"
)
logger.notice(f"Model Server Version: {__version__}")
uvicorn.run(app, host=MODEL_SERVER_ALLOWED_HOST, port=MODEL_SERVER_PORT)