danswer/backend/onyx/file_processing/image_summarization.py
pablonyx 20f2b9b2bb
Add image support for search (#4090)
* add support for image search

* quick fix up

* k

* k

* k

* k

* nit

* quick fix for connector tests
2025-03-05 17:44:18 +00:00

130 lines
3.9 KiB
Python

import base64
from io import BytesIO
from langchain_core.messages import BaseMessage
from langchain_core.messages import HumanMessage
from langchain_core.messages import SystemMessage
from PIL import Image
from onyx.llm.interfaces import LLM
from onyx.llm.utils import message_to_string
from onyx.prompts.image_analysis import IMAGE_SUMMARIZATION_SYSTEM_PROMPT
from onyx.prompts.image_analysis import IMAGE_SUMMARIZATION_USER_PROMPT
from onyx.utils.logger import setup_logger
logger = setup_logger()
def prepare_image_bytes(image_data: bytes) -> str:
"""Prepare image bytes for summarization.
Resizes image if it's larger than 20MB. Encodes image as a base64 string."""
image_data = _resize_image_if_needed(image_data)
# encode image (base64)
encoded_image = _encode_image_for_llm_prompt(image_data)
return encoded_image
def summarize_image_pipeline(
llm: LLM,
image_data: bytes,
query: str | None = None,
system_prompt: str | None = None,
) -> str:
"""Pipeline to generate a summary of an image.
Resizes images if it is bigger than 20MB. Encodes image as a base64 string.
And finally uses the Default LLM to generate a textual summary of the image."""
# resize image if it's bigger than 20MB
encoded_image = prepare_image_bytes(image_data)
summary = _summarize_image(
encoded_image,
llm,
query,
system_prompt,
)
return summary
def summarize_image_with_error_handling(
llm: LLM | None,
image_data: bytes,
context_name: str,
system_prompt: str = IMAGE_SUMMARIZATION_SYSTEM_PROMPT,
user_prompt_template: str = IMAGE_SUMMARIZATION_USER_PROMPT,
) -> str | None:
"""Wrapper function that handles error cases and configuration consistently.
Args:
llm: The LLM with vision capabilities to use for summarization
image_data: The raw image bytes
context_name: Name or title of the image for context
system_prompt: System prompt to use for the LLM
user_prompt_template: Template for the user prompt, should contain {title} placeholder
Returns:
The image summary text, or None if summarization failed or is disabled
"""
if llm is None:
return None
user_prompt = user_prompt_template.format(title=context_name)
return summarize_image_pipeline(llm, image_data, user_prompt, system_prompt)
def _summarize_image(
encoded_image: str,
llm: LLM,
query: str | None = None,
system_prompt: str | None = None,
) -> str:
"""Use default LLM (if it is multimodal) to generate a summary of an image."""
messages: list[BaseMessage] = []
if system_prompt:
messages.append(SystemMessage(content=system_prompt))
messages.append(
HumanMessage(
content=[
{"type": "text", "text": query},
{"type": "image_url", "image_url": {"url": encoded_image}},
],
),
)
try:
return message_to_string(llm.invoke(messages))
except Exception as e:
raise ValueError(f"Summarization failed. Messages: {messages}") from e
def _encode_image_for_llm_prompt(image_data: bytes) -> str:
"""Getting the base64 string."""
base64_encoded_data = base64.b64encode(image_data).decode("utf-8")
return f"data:image/jpeg;base64,{base64_encoded_data}"
def _resize_image_if_needed(image_data: bytes, max_size_mb: int = 20) -> bytes:
"""Resize image if it's larger than the specified max size in MB."""
max_size_bytes = max_size_mb * 1024 * 1024
if len(image_data) > max_size_bytes:
with Image.open(BytesIO(image_data)) as img:
# Reduce dimensions for better size reduction
img.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
output = BytesIO()
# Save with lower quality for compression
img.save(output, format="JPEG", quality=85)
resized_data = output.getvalue()
return resized_data
return image_data