Files
danswer/backend/danswer/search/postprocessing/postprocessing.py

324 lines
12 KiB
Python

from collections.abc import Callable
from collections.abc import Iterator
from typing import cast
import numpy
from danswer.chat.models import SectionRelevancePiece
from danswer.configs.app_configs import BLURB_SIZE
from danswer.configs.constants import RETURN_SEPARATOR
from danswer.configs.model_configs import CROSS_ENCODER_RANGE_MAX
from danswer.configs.model_configs import CROSS_ENCODER_RANGE_MIN
from danswer.document_index.document_index_utils import (
translate_boost_count_to_multiplier,
)
from danswer.llm.interfaces import LLM
from danswer.natural_language_processing.search_nlp_models import (
CrossEncoderEnsembleModel,
)
from danswer.search.enums import LLMEvaluationType
from danswer.search.models import ChunkMetric
from danswer.search.models import InferenceChunk
from danswer.search.models import InferenceChunkUncleaned
from danswer.search.models import InferenceSection
from danswer.search.models import MAX_METRICS_CONTENT
from danswer.search.models import RerankMetricsContainer
from danswer.search.models import SearchQuery
from danswer.search.models import SearchType
from danswer.secondary_llm_flows.chunk_usefulness import llm_batch_eval_sections
from danswer.utils.logger import setup_logger
from danswer.utils.threadpool_concurrency import FunctionCall
from danswer.utils.threadpool_concurrency import run_functions_in_parallel
from danswer.utils.timing import log_function_time
logger = setup_logger()
def _log_top_section_links(search_flow: str, sections: list[InferenceSection]) -> None:
top_links = [
section.center_chunk.source_links[0]
if section.center_chunk.source_links is not None
else "No Link"
for section in sections
]
logger.info(f"Top links from {search_flow} search: {', '.join(top_links)}")
def should_rerank(query: SearchQuery) -> bool:
# Don't re-rank for keyword search
return query.search_type != SearchType.KEYWORD and not query.skip_rerank
def cleanup_chunks(chunks: list[InferenceChunkUncleaned]) -> list[InferenceChunk]:
def _remove_title(chunk: InferenceChunkUncleaned) -> str:
if not chunk.title or not chunk.content:
return chunk.content
if chunk.content.startswith(chunk.title):
return chunk.content[len(chunk.title) :].lstrip()
# BLURB SIZE is by token instead of char but each token is at least 1 char
# If this prefix matches the content, it's assumed the title was prepended
if chunk.content.startswith(chunk.title[:BLURB_SIZE]):
return (
chunk.content.split(RETURN_SEPARATOR, 1)[-1]
if RETURN_SEPARATOR in chunk.content
else chunk.content
)
return chunk.content
def _remove_metadata_suffix(chunk: InferenceChunkUncleaned) -> str:
if not chunk.metadata_suffix:
return chunk.content
return chunk.content.removesuffix(chunk.metadata_suffix).rstrip(
RETURN_SEPARATOR
)
for chunk in chunks:
chunk.content = _remove_title(chunk)
chunk.content = _remove_metadata_suffix(chunk)
return [chunk.to_inference_chunk() for chunk in chunks]
@log_function_time(print_only=True)
def semantic_reranking(
query: str,
chunks: list[InferenceChunk],
model_min: int = CROSS_ENCODER_RANGE_MIN,
model_max: int = CROSS_ENCODER_RANGE_MAX,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> tuple[list[InferenceChunk], list[int]]:
"""Reranks chunks based on cross-encoder models. Additionally provides the original indices
of the chunks in their new sorted order.
Note: this updates the chunks in place, it updates the chunk scores which came from retrieval
"""
cross_encoders = CrossEncoderEnsembleModel()
passages = [
f"{chunk.semantic_identifier or chunk.title or ''}\n{chunk.content}"
for chunk in chunks
]
sim_scores_floats = cross_encoders.predict(query=query, passages=passages)
sim_scores = [numpy.array(scores) for scores in sim_scores_floats]
raw_sim_scores = cast(numpy.ndarray, sum(sim_scores) / len(sim_scores))
cross_models_min = numpy.min(sim_scores)
shifted_sim_scores = sum(
[enc_n_scores - cross_models_min for enc_n_scores in sim_scores]
) / len(sim_scores)
boosts = [translate_boost_count_to_multiplier(chunk.boost) for chunk in chunks]
recency_multiplier = [chunk.recency_bias for chunk in chunks]
boosted_sim_scores = shifted_sim_scores * boosts * recency_multiplier
normalized_b_s_scores = (boosted_sim_scores + cross_models_min - model_min) / (
model_max - model_min
)
orig_indices = [i for i in range(len(normalized_b_s_scores))]
scored_results = list(
zip(normalized_b_s_scores, raw_sim_scores, chunks, orig_indices)
)
scored_results.sort(key=lambda x: x[0], reverse=True)
ranked_sim_scores, ranked_raw_scores, ranked_chunks, ranked_indices = zip(
*scored_results
)
logger.debug(
f"Reranked (Boosted + Time Weighted) similarity scores: {ranked_sim_scores}"
)
# Assign new chunk scores based on reranking
for ind, chunk in enumerate(ranked_chunks):
chunk.score = ranked_sim_scores[ind]
if rerank_metrics_callback is not None:
chunk_metrics = [
ChunkMetric(
document_id=chunk.document_id,
chunk_content_start=chunk.content[:MAX_METRICS_CONTENT],
first_link=chunk.source_links[0] if chunk.source_links else None,
score=chunk.score if chunk.score is not None else 0,
)
for chunk in ranked_chunks
]
rerank_metrics_callback(
RerankMetricsContainer(
metrics=chunk_metrics, raw_similarity_scores=ranked_raw_scores # type: ignore
)
)
return list(ranked_chunks), list(ranked_indices)
def rerank_sections(
query: SearchQuery,
sections_to_rerank: list[InferenceSection],
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> list[InferenceSection]:
"""Chunks are reranked rather than the containing sections, this is because of speed
implications, if reranking models have lower latency for long inputs in the future
we may rerank on the combined context of the section instead
Making the assumption here that often times we want larger Sections to provide context
for the LLM to determine if a section is useful but for reranking, we don't need to be
as stringent. If the Section is relevant, we assume that the chunk rerank score will
also be high.
"""
chunks_to_rerank = [section.center_chunk for section in sections_to_rerank]
ranked_chunks, _ = semantic_reranking(
query=query.query,
chunks=chunks_to_rerank[: query.num_rerank],
rerank_metrics_callback=rerank_metrics_callback,
)
lower_chunks = chunks_to_rerank[query.num_rerank :]
# Scores from rerank cannot be meaningfully combined with scores without rerank
# However the ordering is still important
for lower_chunk in lower_chunks:
lower_chunk.score = None
ranked_chunks.extend(lower_chunks)
chunk_id_to_section = {
section.center_chunk.unique_id: section for section in sections_to_rerank
}
ordered_sections = [chunk_id_to_section[chunk.unique_id] for chunk in ranked_chunks]
return ordered_sections
@log_function_time(print_only=True)
def filter_sections(
query: SearchQuery,
sections_to_filter: list[InferenceSection],
llm: LLM,
# For cost saving, we may turn this on
use_chunk: bool = False,
) -> list[InferenceSection]:
"""Filters sections based on whether the LLM thought they were relevant to the query.
This applies on the section which has more context than the chunk. Hopefully this yields more accurate LLM evaluations.
Returns a list of the unique chunk IDs that were marked as relevant
"""
sections_to_filter = sections_to_filter[: query.max_llm_filter_sections]
contents = [
section.center_chunk.content if use_chunk else section.combined_content
for section in sections_to_filter
]
metadata_list = [section.center_chunk.metadata for section in sections_to_filter]
titles = [
section.center_chunk.semantic_identifier for section in sections_to_filter
]
llm_chunk_selection = llm_batch_eval_sections(
query=query.query,
section_contents=contents,
llm=llm,
titles=titles,
metadata_list=metadata_list,
)
return [
section
for ind, section in enumerate(sections_to_filter)
if llm_chunk_selection[ind]
]
def search_postprocessing(
search_query: SearchQuery,
retrieved_sections: list[InferenceSection],
llm: LLM,
rerank_metrics_callback: Callable[[RerankMetricsContainer], None] | None = None,
) -> Iterator[list[InferenceSection] | list[SectionRelevancePiece]]:
post_processing_tasks: list[FunctionCall] = []
if not retrieved_sections:
# Avoids trying to rerank an empty list which throws an error
yield []
yield []
return
rerank_task_id = None
sections_yielded = False
if should_rerank(search_query):
post_processing_tasks.append(
FunctionCall(
rerank_sections,
(
search_query,
retrieved_sections,
rerank_metrics_callback,
),
)
)
rerank_task_id = post_processing_tasks[-1].result_id
else:
# NOTE: if we don't rerank, we can return the chunks immediately
# since we know this is the final order.
# This way the user experience isn't delayed by the LLM step
_log_top_section_links(search_query.search_type.value, retrieved_sections)
yield retrieved_sections
sections_yielded = True
llm_filter_task_id = None
if search_query.evaluation_type in [
LLMEvaluationType.BASIC,
LLMEvaluationType.UNSPECIFIED,
]:
post_processing_tasks.append(
FunctionCall(
filter_sections,
(
search_query,
retrieved_sections[: search_query.max_llm_filter_sections],
llm,
),
)
)
llm_filter_task_id = post_processing_tasks[-1].result_id
post_processing_results = (
run_functions_in_parallel(post_processing_tasks)
if post_processing_tasks
else {}
)
reranked_sections = cast(
list[InferenceSection] | None,
post_processing_results.get(str(rerank_task_id)) if rerank_task_id else None,
)
if reranked_sections:
if sections_yielded:
logger.error(
"Trying to yield re-ranked sections, but sections were already yielded. This should never happen."
)
else:
_log_top_section_links(search_query.search_type.value, reranked_sections)
yield reranked_sections
llm_selected_section_ids = (
[
section.center_chunk.unique_id
for section in post_processing_results.get(str(llm_filter_task_id), [])
]
if llm_filter_task_id
else []
)
yield [
SectionRelevancePiece(
document_id=section.center_chunk.document_id,
chunk_id=section.center_chunk.chunk_id,
relevant=section.center_chunk.unique_id in llm_selected_section_ids,
content="",
)
for section in (reranked_sections or retrieved_sections)
]