danswer/backend/scripts/reset_indexes.py
2023-09-01 14:43:04 -07:00

57 lines
2.2 KiB
Python

# This file is purely for development use, not included in any builds
import requests
from qdrant_client.http.models import Distance
from qdrant_client.http.models import VectorParams
from typesense.exceptions import ObjectNotFound # type: ignore
from danswer.configs.app_configs import DOCUMENT_INDEX_NAME
from danswer.configs.model_configs import DOC_EMBEDDING_DIM
from danswer.datastores.document_index import get_default_document_index
from danswer.datastores.document_index import SplitDocumentIndex
from danswer.datastores.typesense.store import create_typesense_collection
from danswer.datastores.vespa.store import DOCUMENT_ID_ENDPOINT
from danswer.datastores.vespa.store import VespaIndex
from danswer.utils.clients import get_qdrant_client
from danswer.utils.clients import get_typesense_client
from danswer.utils.logger import setup_logger
logger = setup_logger()
def recreate_qdrant_collection(
collection_name: str, embedding_dim: int = DOC_EMBEDDING_DIM
) -> None:
logger.info(f"Attempting to recreate Qdrant collection {collection_name}")
result = get_qdrant_client().recreate_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE),
)
if not result:
raise RuntimeError("Could not create Qdrant collection")
def recreate_typesense_collection(collection_name: str) -> None:
logger.info(f"Attempting to recreate Typesense collection {collection_name}")
ts_client = get_typesense_client()
try:
ts_client.collections[collection_name].delete()
except ObjectNotFound:
logger.debug(f"Collection {collection_name} does not already exist")
create_typesense_collection(collection_name)
def wipe_vespa_index() -> None:
params = {"selection": "true", "cluster": DOCUMENT_INDEX_NAME}
response = requests.delete(DOCUMENT_ID_ENDPOINT, params=params)
response.raise_for_status()
if __name__ == "__main__":
document_index = get_default_document_index()
if isinstance(document_index, SplitDocumentIndex):
recreate_qdrant_collection("danswer_index")
recreate_typesense_collection("danswer_index")
elif isinstance(document_index, VespaIndex):
wipe_vespa_index()