mirror of
https://github.com/danswer-ai/danswer.git
synced 2025-06-07 13:39:50 +02:00
* adding llm override logic * update * general cleanup * fix various tests * rm * update * update * better comments * k * k * update to pass tests * clarify content * improve timeout
294 lines
11 KiB
Python
294 lines
11 KiB
Python
from unittest.mock import patch
|
|
|
|
import litellm
|
|
import pytest
|
|
from langchain_core.messages import AIMessage
|
|
from langchain_core.messages import AIMessageChunk
|
|
from langchain_core.messages import HumanMessage
|
|
from litellm.types.utils import ChatCompletionDeltaToolCall
|
|
from litellm.types.utils import Delta
|
|
from litellm.types.utils import Function as LiteLLMFunction
|
|
|
|
from onyx.configs.app_configs import MOCK_LLM_RESPONSE
|
|
from onyx.llm.chat_llm import DefaultMultiLLM
|
|
|
|
|
|
def _create_delta(
|
|
role: str | None = None,
|
|
content: str | None = None,
|
|
tool_calls: list[ChatCompletionDeltaToolCall] | None = None,
|
|
) -> Delta:
|
|
delta = Delta(role=role, content=content)
|
|
# NOTE: for some reason, if you pass tool_calls to the constructor, it doesn't actually
|
|
# get set, so we have to do it this way
|
|
delta.tool_calls = tool_calls
|
|
return delta
|
|
|
|
|
|
@pytest.fixture
|
|
def default_multi_llm() -> DefaultMultiLLM:
|
|
return DefaultMultiLLM(
|
|
api_key="test_key",
|
|
timeout=30,
|
|
model_provider="openai",
|
|
model_name="gpt-3.5-turbo",
|
|
)
|
|
|
|
|
|
def test_multiple_tool_calls(default_multi_llm: DefaultMultiLLM) -> None:
|
|
# Mock the litellm.completion function
|
|
with patch("onyx.llm.chat_llm.litellm.completion") as mock_completion:
|
|
# Create a mock response with multiple tool calls using litellm objects
|
|
mock_response = litellm.ModelResponse(
|
|
id="chatcmpl-123",
|
|
choices=[
|
|
litellm.Choices(
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
message=litellm.Message(
|
|
content=None,
|
|
role="assistant",
|
|
tool_calls=[
|
|
litellm.ChatCompletionMessageToolCall(
|
|
id="call_1",
|
|
function=LiteLLMFunction(
|
|
name="get_weather",
|
|
arguments='{"location": "New York"}',
|
|
),
|
|
type="function",
|
|
),
|
|
litellm.ChatCompletionMessageToolCall(
|
|
id="call_2",
|
|
function=LiteLLMFunction(
|
|
name="get_time", arguments='{"timezone": "EST"}'
|
|
),
|
|
type="function",
|
|
),
|
|
],
|
|
),
|
|
)
|
|
],
|
|
model="gpt-3.5-turbo",
|
|
usage=litellm.Usage(
|
|
prompt_tokens=50, completion_tokens=30, total_tokens=80
|
|
),
|
|
)
|
|
mock_completion.return_value = mock_response
|
|
|
|
# Define input messages
|
|
messages = [HumanMessage(content="What's the weather and time in New York?")]
|
|
|
|
# Define available tools
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather for a location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
},
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_time",
|
|
"description": "Get the current time for a timezone",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"timezone": {"type": "string"}},
|
|
"required": ["timezone"],
|
|
},
|
|
},
|
|
},
|
|
]
|
|
|
|
# Call the _invoke_implementation method
|
|
result = default_multi_llm.invoke(messages, tools)
|
|
|
|
# Assert that the result is an AIMessage
|
|
assert isinstance(result, AIMessage)
|
|
|
|
# Assert that the content is None (as per the mock response)
|
|
assert result.content == ""
|
|
|
|
# Assert that there are two tool calls
|
|
assert len(result.tool_calls) == 2
|
|
|
|
# Assert the details of the first tool call
|
|
assert result.tool_calls[0]["id"] == "call_1"
|
|
assert result.tool_calls[0]["name"] == "get_weather"
|
|
assert result.tool_calls[0]["args"] == {"location": "New York"}
|
|
|
|
# Assert the details of the second tool call
|
|
assert result.tool_calls[1]["id"] == "call_2"
|
|
assert result.tool_calls[1]["name"] == "get_time"
|
|
assert result.tool_calls[1]["args"] == {"timezone": "EST"}
|
|
|
|
# Verify that litellm.completion was called with the correct arguments
|
|
mock_completion.assert_called_once_with(
|
|
model="openai/gpt-3.5-turbo",
|
|
api_key="test_key",
|
|
base_url=None,
|
|
api_version=None,
|
|
custom_llm_provider=None,
|
|
messages=[
|
|
{"role": "user", "content": "What's the weather and time in New York?"}
|
|
],
|
|
tools=tools,
|
|
tool_choice=None,
|
|
stream=False,
|
|
temperature=0.0, # Default value from GEN_AI_TEMPERATURE
|
|
timeout=30,
|
|
parallel_tool_calls=False,
|
|
mock_response=MOCK_LLM_RESPONSE,
|
|
)
|
|
|
|
|
|
def test_multiple_tool_calls_streaming(default_multi_llm: DefaultMultiLLM) -> None:
|
|
# Mock the litellm.completion function
|
|
with patch("onyx.llm.chat_llm.litellm.completion") as mock_completion:
|
|
# Create a mock response with multiple tool calls using litellm objects
|
|
mock_response = [
|
|
litellm.ModelResponse(
|
|
id="chatcmpl-123",
|
|
choices=[
|
|
litellm.Choices(
|
|
delta=_create_delta(
|
|
role="assistant",
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="call_1",
|
|
function=LiteLLMFunction(
|
|
name="get_weather", arguments='{"location": '
|
|
),
|
|
type="function",
|
|
index=0,
|
|
)
|
|
],
|
|
),
|
|
finish_reason=None,
|
|
index=0,
|
|
)
|
|
],
|
|
model="gpt-3.5-turbo",
|
|
),
|
|
litellm.ModelResponse(
|
|
id="chatcmpl-123",
|
|
choices=[
|
|
litellm.Choices(
|
|
delta=_create_delta(
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="",
|
|
function=LiteLLMFunction(arguments='"New York"}'),
|
|
type="function",
|
|
index=0,
|
|
)
|
|
]
|
|
),
|
|
finish_reason=None,
|
|
index=0,
|
|
)
|
|
],
|
|
model="gpt-3.5-turbo",
|
|
),
|
|
litellm.ModelResponse(
|
|
id="chatcmpl-123",
|
|
choices=[
|
|
litellm.Choices(
|
|
delta=_create_delta(
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="call_2",
|
|
function=LiteLLMFunction(
|
|
name="get_time", arguments='{"timezone": "EST"}'
|
|
),
|
|
type="function",
|
|
index=1,
|
|
)
|
|
]
|
|
),
|
|
finish_reason="tool_calls",
|
|
index=0,
|
|
)
|
|
],
|
|
model="gpt-3.5-turbo",
|
|
),
|
|
]
|
|
mock_completion.return_value = mock_response
|
|
|
|
# Define input messages and tools (same as in the non-streaming test)
|
|
messages = [HumanMessage(content="What's the weather and time in New York?")]
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather for a location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
},
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_time",
|
|
"description": "Get the current time for a timezone",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"timezone": {"type": "string"}},
|
|
"required": ["timezone"],
|
|
},
|
|
},
|
|
},
|
|
]
|
|
|
|
# Call the stream method
|
|
stream_result = list(default_multi_llm.stream(messages, tools))
|
|
|
|
# Assert that we received the correct number of chunks
|
|
assert len(stream_result) == 3
|
|
|
|
# Combine all chunks into a single AIMessage
|
|
combined_result: AIMessage = AIMessageChunk(content="")
|
|
for chunk in stream_result:
|
|
combined_result += chunk # type: ignore
|
|
|
|
# Assert that the combined result matches our expectations
|
|
assert isinstance(combined_result, AIMessage)
|
|
assert combined_result.content == ""
|
|
assert len(combined_result.tool_calls) == 2
|
|
assert combined_result.tool_calls[0]["id"] == "call_1"
|
|
assert combined_result.tool_calls[0]["name"] == "get_weather"
|
|
assert combined_result.tool_calls[0]["args"] == {"location": "New York"}
|
|
assert combined_result.tool_calls[1]["id"] == "call_2"
|
|
assert combined_result.tool_calls[1]["name"] == "get_time"
|
|
assert combined_result.tool_calls[1]["args"] == {"timezone": "EST"}
|
|
|
|
# Verify that litellm.completion was called with the correct arguments
|
|
mock_completion.assert_called_once_with(
|
|
model="openai/gpt-3.5-turbo",
|
|
api_key="test_key",
|
|
base_url=None,
|
|
api_version=None,
|
|
custom_llm_provider=None,
|
|
messages=[
|
|
{"role": "user", "content": "What's the weather and time in New York?"}
|
|
],
|
|
tools=tools,
|
|
tool_choice=None,
|
|
stream=True,
|
|
temperature=0.0, # Default value from GEN_AI_TEMPERATURE
|
|
timeout=30,
|
|
parallel_tool_calls=False,
|
|
mock_response=MOCK_LLM_RESPONSE,
|
|
)
|