danswer/backend/onyx/chat/models.py
2024-12-13 09:56:10 -08:00

330 lines
9.6 KiB
Python

from collections.abc import Callable
from collections.abc import Iterator
from datetime import datetime
from enum import Enum
from typing import Any
from typing import TYPE_CHECKING
from pydantic import BaseModel
from pydantic import ConfigDict
from pydantic import Field
from pydantic import model_validator
from onyx.configs.constants import DocumentSource
from onyx.configs.constants import MessageType
from onyx.context.search.enums import QueryFlow
from onyx.context.search.enums import RecencyBiasSetting
from onyx.context.search.enums import SearchType
from onyx.context.search.models import RetrievalDocs
from onyx.llm.override_models import PromptOverride
from onyx.tools.models import ToolCallFinalResult
from onyx.tools.models import ToolCallKickoff
from onyx.tools.models import ToolResponse
from onyx.tools.tool_implementations.custom.base_tool_types import ToolResultType
if TYPE_CHECKING:
from onyx.db.models import Prompt
class LlmDoc(BaseModel):
"""This contains the minimal set information for the LLM portion including citations"""
document_id: str
content: str
blurb: str
semantic_identifier: str
source_type: DocumentSource
metadata: dict[str, str | list[str]]
updated_at: datetime | None
link: str | None
source_links: dict[int, str] | None
match_highlights: list[str] | None
# First chunk of info for streaming QA
class QADocsResponse(RetrievalDocs):
rephrased_query: str | None = None
predicted_flow: QueryFlow | None
predicted_search: SearchType | None
applied_source_filters: list[DocumentSource] | None
applied_time_cutoff: datetime | None
recency_bias_multiplier: float
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
initial_dict = super().model_dump(mode="json", *args, **kwargs) # type: ignore
initial_dict["applied_time_cutoff"] = (
self.applied_time_cutoff.isoformat() if self.applied_time_cutoff else None
)
return initial_dict
class StreamStopReason(Enum):
CONTEXT_LENGTH = "context_length"
CANCELLED = "cancelled"
class StreamStopInfo(BaseModel):
stop_reason: StreamStopReason
def model_dump(self, *args: list, **kwargs: dict[str, Any]) -> dict[str, Any]: # type: ignore
data = super().model_dump(mode="json", *args, **kwargs) # type: ignore
data["stop_reason"] = self.stop_reason.name
return data
class LLMRelevanceFilterResponse(BaseModel):
llm_selected_doc_indices: list[int]
class FinalUsedContextDocsResponse(BaseModel):
final_context_docs: list[LlmDoc]
class RelevanceAnalysis(BaseModel):
relevant: bool
content: str | None = None
class SectionRelevancePiece(RelevanceAnalysis):
"""LLM analysis mapped to an Inference Section"""
document_id: str
chunk_id: int # ID of the center chunk for a given inference section
class DocumentRelevance(BaseModel):
"""Contains all relevance information for a given search"""
relevance_summaries: dict[str, RelevanceAnalysis]
class OnyxAnswerPiece(BaseModel):
# A small piece of a complete answer. Used for streaming back answers.
answer_piece: str | None # if None, specifies the end of an Answer
# An intermediate representation of citations, later translated into
# a mapping of the citation [n] number to SearchDoc
class CitationInfo(BaseModel):
citation_num: int
document_id: str
class AllCitations(BaseModel):
citations: list[CitationInfo]
# This is a mapping of the citation number to the document index within
# the result search doc set
class MessageSpecificCitations(BaseModel):
citation_map: dict[int, int]
class MessageResponseIDInfo(BaseModel):
user_message_id: int | None
reserved_assistant_message_id: int
class StreamingError(BaseModel):
error: str
stack_trace: str | None = None
class OnyxContext(BaseModel):
content: str
document_id: str
semantic_identifier: str
blurb: str
class OnyxContexts(BaseModel):
contexts: list[OnyxContext]
class OnyxAnswer(BaseModel):
answer: str | None
class ThreadMessage(BaseModel):
message: str
sender: str | None = None
role: MessageType = MessageType.USER
class ChatOnyxBotResponse(BaseModel):
answer: str | None = None
citations: list[CitationInfo] | None = None
docs: QADocsResponse | None = None
llm_selected_doc_indices: list[int] | None = None
error_msg: str | None = None
chat_message_id: int | None = None
answer_valid: bool = True # Reflexion result, default True if Reflexion not run
class FileChatDisplay(BaseModel):
file_ids: list[str]
class CustomToolResponse(BaseModel):
response: ToolResultType
tool_name: str
class ToolConfig(BaseModel):
id: int
class PromptOverrideConfig(BaseModel):
name: str
description: str = ""
system_prompt: str
task_prompt: str = ""
include_citations: bool = True
datetime_aware: bool = True
class PersonaOverrideConfig(BaseModel):
name: str
description: str
search_type: SearchType = SearchType.SEMANTIC
num_chunks: float | None = None
llm_relevance_filter: bool = False
llm_filter_extraction: bool = False
recency_bias: RecencyBiasSetting = RecencyBiasSetting.AUTO
llm_model_provider_override: str | None = None
llm_model_version_override: str | None = None
prompts: list[PromptOverrideConfig] = Field(default_factory=list)
prompt_ids: list[int] = Field(default_factory=list)
document_set_ids: list[int] = Field(default_factory=list)
tools: list[ToolConfig] = Field(default_factory=list)
tool_ids: list[int] = Field(default_factory=list)
custom_tools_openapi: list[dict[str, Any]] = Field(default_factory=list)
AnswerQuestionPossibleReturn = (
OnyxAnswerPiece
| CitationInfo
| OnyxContexts
| FileChatDisplay
| CustomToolResponse
| StreamingError
| StreamStopInfo
)
AnswerQuestionStreamReturn = Iterator[AnswerQuestionPossibleReturn]
class LLMMetricsContainer(BaseModel):
prompt_tokens: int
response_tokens: int
StreamProcessor = Callable[[Iterator[str]], AnswerQuestionStreamReturn]
class DocumentPruningConfig(BaseModel):
max_chunks: int | None = None
max_window_percentage: float | None = None
max_tokens: int | None = None
# different pruning behavior is expected when the
# user manually selects documents they want to chat with
# e.g. we don't want to truncate each document to be no more
# than one chunk long
is_manually_selected_docs: bool = False
# If user specifies to include additional context Chunks for each match, then different pruning
# is used. As many Sections as possible are included, and the last Section is truncated
# If this is false, all of the Sections are truncated if they are longer than the expected Chunk size.
# Sections are often expected to be longer than the maximum Chunk size but Chunks should not be.
use_sections: bool = True
# If using tools, then we need to consider the tool length
tool_num_tokens: int = 0
# If using a tool message to represent the docs, then we have to JSON serialize
# the document content, which adds to the token count.
using_tool_message: bool = False
class ContextualPruningConfig(DocumentPruningConfig):
num_chunk_multiple: int
@classmethod
def from_doc_pruning_config(
cls, num_chunk_multiple: int, doc_pruning_config: DocumentPruningConfig
) -> "ContextualPruningConfig":
return cls(num_chunk_multiple=num_chunk_multiple, **doc_pruning_config.dict())
class CitationConfig(BaseModel):
all_docs_useful: bool = False
class QuotesConfig(BaseModel):
pass
class AnswerStyleConfig(BaseModel):
citation_config: CitationConfig | None = None
quotes_config: QuotesConfig | None = None
document_pruning_config: DocumentPruningConfig = Field(
default_factory=DocumentPruningConfig
)
# forces the LLM to return a structured response, see
# https://platform.openai.com/docs/guides/structured-outputs/introduction
# right now, only used by the simple chat API
structured_response_format: dict | None = None
@model_validator(mode="after")
def check_quotes_and_citation(self) -> "AnswerStyleConfig":
if self.citation_config is None and self.quotes_config is None:
raise ValueError(
"One of `citation_config` or `quotes_config` must be provided"
)
if self.citation_config is not None and self.quotes_config is not None:
raise ValueError(
"Only one of `citation_config` or `quotes_config` must be provided"
)
return self
class PromptConfig(BaseModel):
"""Final representation of the Prompt configuration passed
into the `Answer` object."""
system_prompt: str
task_prompt: str
datetime_aware: bool
include_citations: bool
@classmethod
def from_model(
cls, model: "Prompt", prompt_override: PromptOverride | None = None
) -> "PromptConfig":
override_system_prompt = (
prompt_override.system_prompt if prompt_override else None
)
override_task_prompt = prompt_override.task_prompt if prompt_override else None
return cls(
system_prompt=override_system_prompt or model.system_prompt,
task_prompt=override_task_prompt or model.task_prompt,
datetime_aware=model.datetime_aware,
include_citations=model.include_citations,
)
model_config = ConfigDict(frozen=True)
ResponsePart = (
OnyxAnswerPiece
| CitationInfo
| ToolCallKickoff
| ToolResponse
| ToolCallFinalResult
| StreamStopInfo
)