danswer/backend/supervisord.conf

108 lines
3.6 KiB
Plaintext

[supervisord]
nodaemon=true
user=root
logfile=/var/log/supervisord.log
# Indexing is the heaviest job, also requires some CPU intensive steps
# Cannot place this in Celery for now because Celery must run as a single process (see note below)
# Indexing uses multi-processing to speed things up
[program:document_indexing]
environment=CURRENT_PROCESS_IS_AN_INDEXING_JOB=true
command=python danswer/background/update.py
stdout_logfile=/var/log/document_indexing.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
autorestart=true
# Background jobs that must be run async due to long time to completion
# NOTE: due to an issue with Celery + SQLAlchemy
# (https://github.com/celery/celery/issues/7007#issuecomment-1740139367)
# we must use the threads pool instead of the default prefork pool for now
# in order to avoid intermittent errors like:
# `billiard.exceptions.WorkerLostError: Worker exited prematurely: signal 11 (SIGSEGV)`.
#
# This means workers will not be able take advantage of multiple CPU cores
# on a system, but this should be okay for now since all our celery tasks are
# relatively compute-light (e.g. they tend to just make a bunch of requests to
# Vespa / Postgres)
[program:celery_worker_primary]
command=celery -A danswer.background.celery.celery_run:celery_app worker
--pool=threads
--concurrency=4
--prefetch-multiplier=1
--loglevel=INFO
--hostname=primary@%%n
-Q celery
stdout_logfile=/var/log/celery_worker_primary.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
autorestart=true
startsecs=10
stopasgroup=true
[program:celery_worker_light]
command=bash -c "celery -A danswer.background.celery.celery_run:celery_app worker \
--pool=threads \
--concurrency=${CELERY_WORKER_LIGHT_CONCURRENCY:-24} \
--prefetch-multiplier=${CELERY_WORKER_LIGHT_PREFETCH_MULTIPLIER:-8} \
--loglevel=INFO \
--hostname=light@%%n \
-Q vespa_metadata_sync,connector_deletion"
stdout_logfile=/var/log/celery_worker_light.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
autorestart=true
startsecs=10
stopasgroup=true
[program:celery_worker_heavy]
command=celery -A danswer.background.celery.celery_run:celery_app worker
--pool=threads
--concurrency=4
--prefetch-multiplier=1
--loglevel=INFO
--hostname=heavy@%%n
-Q connector_pruning
stdout_logfile=/var/log/celery_worker_heavy.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
autorestart=true
startsecs=10
stopasgroup=true
# Job scheduler for periodic tasks
[program:celery_beat]
command=celery -A danswer.background.celery.celery_run:celery_app beat
stdout_logfile=/var/log/celery_beat.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
startsecs=10
stopasgroup=true
# Listens for Slack messages and responds with answers
# for all channels that the DanswerBot has been added to.
# If not setup, this will just fail 5 times and then stop.
# More details on setup here: https://docs.danswer.dev/slack_bot_setup
[program:slack_bot]
command=python danswer/danswerbot/slack/listener.py
stdout_logfile=/var/log/slack_bot.log
stdout_logfile_maxbytes=16MB
redirect_stderr=true
autorestart=true
startretries=5
startsecs=60
# Pushes all logs from the above programs to stdout
# No log rotation here, since it's stdout it's handled by the Docker container logging
[program:log-redirect-handler]
command=tail -qF
/var/log/celery_beat.log
/var/log/celery_worker_primary.log
/var/log/celery_worker_light.log
/var/log/celery_worker_heavy.log
/var/log/document_indexing.log
/var/log/slack_bot.log
stdout_logfile=/dev/stdout
stdout_logfile_maxbytes = 0 # must be set to 0 when stdout_logfile=/dev/stdout
autorestart=true