opus_pvq: add resynth support and band encoding cost function
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
This commit is contained in:
parent
802d94c36e
commit
3f1c527bf5
libavcodec
@ -389,10 +389,10 @@ static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, u
|
||||
* Faster than libopus's search, operates entirely in the signed domain.
|
||||
* Slightly worse/better depending on N, K and the input vector.
|
||||
*/
|
||||
static void celt_pvq_search(float *X, int *y, int K, int N)
|
||||
static int celt_pvq_search(float *X, int *y, int K, int N)
|
||||
{
|
||||
int i;
|
||||
float res = 0.0f, y_norm = 0.0f, xy_norm = 0.0f;
|
||||
int i, y_norm = 0;
|
||||
float res = 0.0f, xy_norm = 0.0f;
|
||||
|
||||
for (i = 0; i < N; i++)
|
||||
res += FFABS(X[i]);
|
||||
@ -407,8 +407,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
|
||||
}
|
||||
|
||||
while (K) {
|
||||
int max_idx = 0, phase = FFSIGN(K);
|
||||
float max_den = 1.0f, max_num = 0.0f;
|
||||
int max_idx = 0, max_den = 1, phase = FFSIGN(K);
|
||||
float max_num = 0.0f;
|
||||
y_norm += 1.0f;
|
||||
|
||||
for (i = 0; i < N; i++) {
|
||||
@ -416,8 +416,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
|
||||
* to it, attempting to decrease it further will actually increase the
|
||||
* sum. Prevent this by disregarding any 0 positions when decrementing. */
|
||||
const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
|
||||
const int y_new = y_norm + 2*phase*FFABS(y[i]);
|
||||
float xy_new = xy_norm + 1*phase*FFABS(X[i]);
|
||||
float y_new = y_norm + 2*phase*FFABS(y[i]);
|
||||
xy_new = xy_new * xy_new;
|
||||
if (ca && (max_den*xy_new) > (y_new*max_num)) {
|
||||
max_den = y_new;
|
||||
@ -433,6 +433,8 @@ static void celt_pvq_search(float *X, int *y, int K, int N)
|
||||
y_norm += 2*phase*y[max_idx];
|
||||
y[max_idx] += phase;
|
||||
}
|
||||
|
||||
return y_norm;
|
||||
}
|
||||
|
||||
static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
|
||||
@ -441,8 +443,10 @@ static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_
|
||||
int y[176];
|
||||
|
||||
celt_exp_rotation(X, N, blocks, K, spread, 1);
|
||||
celt_pvq_search(X, y, K, N);
|
||||
gain /= sqrtf(celt_pvq_search(X, y, K, N));
|
||||
celt_encode_pulses(rc, y, N, K);
|
||||
celt_normalize_residual(y, X, N, gain);
|
||||
celt_exp_rotation(X, N, blocks, K, spread, 0);
|
||||
return celt_extract_collapse_mask(y, N, blocks);
|
||||
}
|
||||
|
||||
@ -844,7 +848,7 @@ static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, in
|
||||
static void celt_stereo_ms_decouple(float *X, float *Y, int N)
|
||||
{
|
||||
int i;
|
||||
const float decouple_norm = 1.0f/sqrtf(2.0f);
|
||||
const float decouple_norm = 1.0f/sqrtf(1.0f + 1.0f);
|
||||
for (i = 0; i < N; i++) {
|
||||
const float Xret = X[i];
|
||||
X[i] = (X[i] + Y[i])*decouple_norm;
|
||||
@ -860,9 +864,9 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
const uint8_t *cache;
|
||||
int dualstereo, split;
|
||||
int imid = 0, iside = 0;
|
||||
//uint32_t N0 = N;
|
||||
uint32_t N0 = N;
|
||||
int N_B = N / blocks;
|
||||
//int N_B0 = N_B;
|
||||
int N_B0 = N_B;
|
||||
int B0 = blocks;
|
||||
int time_divide = 0;
|
||||
int recombine = 0;
|
||||
@ -883,6 +887,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
f->remaining2 -= 1 << 3;
|
||||
b -= 1 << 3;
|
||||
}
|
||||
x[0] = 1.0f - 2.0f*(x[0] < 0);
|
||||
x = Y;
|
||||
}
|
||||
if (lowband_out)
|
||||
@ -922,7 +927,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
tf_change++;
|
||||
}
|
||||
B0 = blocks;
|
||||
//N_B0 = N_B;
|
||||
N_B0 = N_B;
|
||||
|
||||
/* Reorganize the samples in time order instead of frequency order */
|
||||
if (B0 > 1)
|
||||
@ -977,19 +982,20 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
|
||||
if (dualstereo) {
|
||||
if (itheta == 0)
|
||||
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
|
||||
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
|
||||
f->block[1].lin_energy[band], N);
|
||||
else
|
||||
celt_stereo_ms_decouple(X, Y, N);
|
||||
}
|
||||
} else if (dualstereo) {
|
||||
inv = itheta > 8192;
|
||||
if (inv)
|
||||
{
|
||||
if (inv) {
|
||||
int j;
|
||||
for (j=0;j<N;j++)
|
||||
for (j = 0; j < N; j++)
|
||||
Y[j] = -Y[j];
|
||||
}
|
||||
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
|
||||
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
|
||||
f->block[1].lin_energy[band], N);
|
||||
|
||||
if (b > 2 << 3 && f->remaining2 > 2 << 3) {
|
||||
ff_opus_rc_enc_log(rc, inv, 2);
|
||||
@ -1153,8 +1159,124 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
/* Finally do the actual quantization */
|
||||
cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
|
||||
f->spread, blocks, gain);
|
||||
} else {
|
||||
/* If there's no pulse, fill the band anyway */
|
||||
int j;
|
||||
uint32_t cm_mask = (1 << blocks) - 1;
|
||||
fill &= cm_mask;
|
||||
if (!fill) {
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = 0.0f;
|
||||
} else {
|
||||
if (!lowband) {
|
||||
/* Noise */
|
||||
for (j = 0; j < N; j++)
|
||||
X[j] = (((int32_t)celt_rng(f)) >> 20);
|
||||
cm = cm_mask;
|
||||
} else {
|
||||
/* Folded spectrum */
|
||||
for (j = 0; j < N; j++) {
|
||||
/* About 48 dB below the "normal" folding level */
|
||||
X[j] = lowband[j] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
|
||||
}
|
||||
cm = fill;
|
||||
}
|
||||
celt_renormalize_vector(X, N, gain);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
||||
if (dualstereo) {
|
||||
int j;
|
||||
if (N != 2)
|
||||
celt_stereo_merge(X, Y, mid, N);
|
||||
if (inv) {
|
||||
for (j = 0; j < N; j++)
|
||||
Y[j] *= -1;
|
||||
}
|
||||
} else if (level == 0) {
|
||||
int k;
|
||||
|
||||
/* Undo the sample reorganization going from time order to frequency order */
|
||||
if (B0 > 1)
|
||||
celt_interleave_hadamard(f->scratch, X, N_B >> recombine,
|
||||
B0<<recombine, longblocks);
|
||||
|
||||
/* Undo time-freq changes that we did earlier */
|
||||
N_B = N_B0;
|
||||
blocks = B0;
|
||||
for (k = 0; k < time_divide; k++) {
|
||||
blocks >>= 1;
|
||||
N_B <<= 1;
|
||||
cm |= cm >> blocks;
|
||||
celt_haar1(X, N_B, blocks);
|
||||
}
|
||||
|
||||
for (k = 0; k < recombine; k++) {
|
||||
cm = ff_celt_bit_deinterleave[cm];
|
||||
celt_haar1(X, N0>>k, 1<<k);
|
||||
}
|
||||
blocks <<= recombine;
|
||||
|
||||
/* Scale output for later folding */
|
||||
if (lowband_out) {
|
||||
int j;
|
||||
float n = sqrtf(N0);
|
||||
for (j = 0; j < N0; j++)
|
||||
lowband_out[j] = n * X[j];
|
||||
}
|
||||
cm = av_mod_uintp2(cm, blocks);
|
||||
}
|
||||
|
||||
return cm;
|
||||
}
|
||||
|
||||
float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band, float *bits,
|
||||
float lambda)
|
||||
{
|
||||
int i, b = 0;
|
||||
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
|
||||
const int band_size = ff_celt_freq_range[band] << f->size;
|
||||
float buf[352], lowband_scratch[176], norm1[176], norm2[176];
|
||||
float dist, cost, err_x = 0.0f, err_y = 0.0f;
|
||||
float *X = buf;
|
||||
float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
|
||||
float *Y = (f->channels == 2) ? &buf[176] : NULL;
|
||||
float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
|
||||
OPUS_RC_CHECKPOINT_SPAWN(rc);
|
||||
|
||||
memcpy(X, X_orig, band_size*sizeof(float));
|
||||
if (Y)
|
||||
memcpy(Y, Y_orig, band_size*sizeof(float));
|
||||
|
||||
f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
|
||||
if (band <= f->coded_bands - 1) {
|
||||
int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
|
||||
b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
|
||||
}
|
||||
|
||||
if (f->dual_stereo) {
|
||||
ff_celt_encode_band(f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
|
||||
f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
|
||||
|
||||
ff_celt_encode_band(f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
|
||||
f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
|
||||
} else {
|
||||
ff_celt_encode_band(f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
|
||||
norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
|
||||
}
|
||||
|
||||
for (i = 0; i < band_size; i++) {
|
||||
err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
|
||||
err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
|
||||
}
|
||||
|
||||
dist = sqrtf(err_x) + sqrtf(err_y);
|
||||
cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
|
||||
*bits += cost;
|
||||
|
||||
OPUS_RC_CHECKPOINT_ROLLBACK(rc);
|
||||
|
||||
return lambda*dist*cost;
|
||||
}
|
||||
|
@ -38,4 +38,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
|
||||
float *lowband, int duration, float *lowband_out, int level,
|
||||
float gain, float *lowband_scratch, int fill);
|
||||
|
||||
float ff_celt_quant_band_cost(CeltFrame *f, OpusRangeCoder *rc, int band,
|
||||
float *bits, float lambda);
|
||||
|
||||
#endif /* AVCODEC_OPUS_PVQ_H */
|
||||
|
Loading…
x
Reference in New Issue
Block a user