dnn: export operand info in python script and load in c code
Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
This commit is contained in:
@ -72,7 +72,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
ConvolutionalParams *conv_params;
|
ConvolutionalParams *conv_params;
|
||||||
DepthToSpaceParams *depth_to_space_params;
|
DepthToSpaceParams *depth_to_space_params;
|
||||||
LayerPadParams *pad_params;
|
LayerPadParams *pad_params;
|
||||||
int32_t operand_index = 0;
|
|
||||||
|
|
||||||
model = av_malloc(sizeof(DNNModel));
|
model = av_malloc(sizeof(DNNModel));
|
||||||
if (!model){
|
if (!model){
|
||||||
@ -93,9 +92,10 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
}
|
}
|
||||||
model->model = (void *)network;
|
model->model = (void *)network;
|
||||||
|
|
||||||
avio_seek(model_file_context, file_size - 4, SEEK_SET);
|
avio_seek(model_file_context, file_size - 8, SEEK_SET);
|
||||||
network->layers_num = (int32_t)avio_rl32(model_file_context);
|
network->layers_num = (int32_t)avio_rl32(model_file_context);
|
||||||
dnn_size = 4;
|
network->operands_num = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size = 8;
|
||||||
avio_seek(model_file_context, 0, SEEK_SET);
|
avio_seek(model_file_context, 0, SEEK_SET);
|
||||||
|
|
||||||
network->layers = av_mallocz(network->layers_num * sizeof(Layer));
|
network->layers = av_mallocz(network->layers_num * sizeof(Layer));
|
||||||
@ -105,11 +105,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* Operands should be read from model file, the whole change will be huge.
|
|
||||||
* to make things step by step, we first mock the operands, instead of reading from model file.
|
|
||||||
*/
|
|
||||||
network->operands_num = network->layers_num + 1;
|
|
||||||
network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
|
network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
|
||||||
if (!network->operands){
|
if (!network->operands){
|
||||||
avio_closep(&model_file_context);
|
avio_closep(&model_file_context);
|
||||||
@ -120,8 +115,6 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
for (layer = 0; layer < network->layers_num; ++layer){
|
for (layer = 0; layer < network->layers_num; ++layer){
|
||||||
layer_type = (int32_t)avio_rl32(model_file_context);
|
layer_type = (int32_t)avio_rl32(model_file_context);
|
||||||
dnn_size += 4;
|
dnn_size += 4;
|
||||||
network->layers[layer].input_operand_indexes[0] = operand_index++;
|
|
||||||
network->layers[layer].output_operand_index = operand_index;
|
|
||||||
switch (layer_type){
|
switch (layer_type){
|
||||||
case CONV:
|
case CONV:
|
||||||
conv_params = av_malloc(sizeof(ConvolutionalParams));
|
conv_params = av_malloc(sizeof(ConvolutionalParams));
|
||||||
@ -162,6 +155,9 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
for (i = 0; i < conv_params->output_num; ++i){
|
for (i = 0; i < conv_params->output_num; ++i){
|
||||||
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
|
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
|
||||||
}
|
}
|
||||||
|
network->layers[layer].input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
|
||||||
|
network->layers[layer].output_operand_index = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 8;
|
||||||
network->layers[layer].type = CONV;
|
network->layers[layer].type = CONV;
|
||||||
network->layers[layer].params = conv_params;
|
network->layers[layer].params = conv_params;
|
||||||
break;
|
break;
|
||||||
@ -174,6 +170,9 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
}
|
}
|
||||||
depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context);
|
depth_to_space_params->block_size = (int32_t)avio_rl32(model_file_context);
|
||||||
dnn_size += 4;
|
dnn_size += 4;
|
||||||
|
network->layers[layer].input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
|
||||||
|
network->layers[layer].output_operand_index = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 8;
|
||||||
network->layers[layer].type = DEPTH_TO_SPACE;
|
network->layers[layer].type = DEPTH_TO_SPACE;
|
||||||
network->layers[layer].params = depth_to_space_params;
|
network->layers[layer].params = depth_to_space_params;
|
||||||
break;
|
break;
|
||||||
@ -191,6 +190,9 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
pad_params->paddings[i][1] = avio_rl32(model_file_context);
|
pad_params->paddings[i][1] = avio_rl32(model_file_context);
|
||||||
dnn_size += 8;
|
dnn_size += 8;
|
||||||
}
|
}
|
||||||
|
network->layers[layer].input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
|
||||||
|
network->layers[layer].output_operand_index = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 8;
|
||||||
network->layers[layer].type = MIRROR_PAD;
|
network->layers[layer].type = MIRROR_PAD;
|
||||||
network->layers[layer].params = pad_params;
|
network->layers[layer].params = pad_params;
|
||||||
break;
|
break;
|
||||||
@ -201,6 +203,33 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for (int32_t i = 0; i < network->operands_num; ++i){
|
||||||
|
DnnOperand *oprd;
|
||||||
|
int32_t name_len;
|
||||||
|
int32_t operand_index = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
|
||||||
|
oprd = &network->operands[operand_index];
|
||||||
|
name_len = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
|
||||||
|
avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name));
|
||||||
|
dnn_size += name_len;
|
||||||
|
|
||||||
|
oprd->type = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
|
||||||
|
oprd->data_type = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
|
||||||
|
for (int32_t dim = 0; dim < 4; ++dim) {
|
||||||
|
oprd->dims[dim] = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
oprd->isNHWC = 1;
|
||||||
|
}
|
||||||
|
|
||||||
avio_closep(&model_file_context);
|
avio_closep(&model_file_context);
|
||||||
|
|
||||||
if (dnn_size != file_size){
|
if (dnn_size != file_size){
|
||||||
|
@ -36,7 +36,7 @@ typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
|
|||||||
|
|
||||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
|
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam;
|
||||||
|
|
||||||
typedef enum {DOT_INPUT, DOT_INTERMEDIATE, DOT_OUTPUT} DNNOperandType;
|
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_INPUT} DNNOperandType;
|
||||||
|
|
||||||
typedef struct Layer{
|
typedef struct Layer{
|
||||||
DNNLayerType type;
|
DNNLayerType type;
|
||||||
|
@ -32,7 +32,7 @@ typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType;
|
|||||||
|
|
||||||
typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
|
typedef enum {DNN_NATIVE, DNN_TF} DNNBackendType;
|
||||||
|
|
||||||
typedef enum {DNN_FLOAT, DNN_UINT8} DNNDataType;
|
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
|
||||||
|
|
||||||
typedef struct DNNInputData{
|
typedef struct DNNInputData{
|
||||||
void *data;
|
void *data;
|
||||||
|
@ -23,6 +23,37 @@ import sys, struct
|
|||||||
|
|
||||||
__all__ = ['convert_from_tensorflow']
|
__all__ = ['convert_from_tensorflow']
|
||||||
|
|
||||||
|
class Operand(object):
|
||||||
|
IOTYPE_INPUT = 1
|
||||||
|
IOTYPE_OUTPUT = 2
|
||||||
|
IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
|
||||||
|
DTYPE_FLOAT = 1
|
||||||
|
DTYPE_UINT8 = 4
|
||||||
|
index = 0
|
||||||
|
def __init__(self, name, dtype, dims):
|
||||||
|
self.name = name
|
||||||
|
self.dtype = dtype
|
||||||
|
self.dims = dims
|
||||||
|
self.iotype = 0
|
||||||
|
self.used_count = 0
|
||||||
|
self.index = Operand.index
|
||||||
|
Operand.index = Operand.index + 1
|
||||||
|
self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
|
||||||
|
self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
|
||||||
|
|
||||||
|
def add_iotype(self, iotype):
|
||||||
|
self.iotype = self.iotype | iotype
|
||||||
|
if iotype == Operand.IOTYPE_INPUT:
|
||||||
|
self.used_count = self.used_count + 1
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
|
||||||
|
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
|
||||||
|
self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
|
||||||
|
|
||||||
|
def __lt__(self, other):
|
||||||
|
return self.index < other.index
|
||||||
|
|
||||||
class TFConverter:
|
class TFConverter:
|
||||||
def __init__(self, graph_def, nodes, outfile, dump4tb):
|
def __init__(self, graph_def, nodes, outfile, dump4tb):
|
||||||
self.graph_def = graph_def
|
self.graph_def = graph_def
|
||||||
@ -37,8 +68,28 @@ class TFConverter:
|
|||||||
self.conv_paddings = {'VALID':0, 'SAME':1}
|
self.conv_paddings = {'VALID':0, 'SAME':1}
|
||||||
self.converted_nodes = set()
|
self.converted_nodes = set()
|
||||||
self.conv2d_scope_names = set()
|
self.conv2d_scope_names = set()
|
||||||
|
self.conv2d_scopename_inputname_dict = {}
|
||||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
|
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
|
||||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||||
|
self.name_operand_dict = {}
|
||||||
|
|
||||||
|
|
||||||
|
def add_operand(self, name, type):
|
||||||
|
node = self.name_node_dict[name]
|
||||||
|
if name not in self.name_operand_dict:
|
||||||
|
dtype = node.attr['dtype'].type
|
||||||
|
if dtype == 0:
|
||||||
|
dtype = node.attr['T'].type
|
||||||
|
dims = [-1,-1,-1,-1]
|
||||||
|
if 'shape' in node.attr:
|
||||||
|
dims[0] = node.attr['shape'].shape.dim[0].size
|
||||||
|
dims[1] = node.attr['shape'].shape.dim[1].size
|
||||||
|
dims[2] = node.attr['shape'].shape.dim[2].size
|
||||||
|
dims[3] = node.attr['shape'].shape.dim[3].size
|
||||||
|
operand = Operand(name, dtype, dims)
|
||||||
|
self.name_operand_dict[name] = operand;
|
||||||
|
self.name_operand_dict[name].add_iotype(type)
|
||||||
|
return self.name_operand_dict[name].index
|
||||||
|
|
||||||
|
|
||||||
def dump_for_tensorboard(self):
|
def dump_for_tensorboard(self):
|
||||||
@ -60,11 +111,10 @@ class TFConverter:
|
|||||||
# the BiasAdd name is possible be changed into the output name,
|
# the BiasAdd name is possible be changed into the output name,
|
||||||
# if activation is None, and BiasAdd.next is the last op which is Identity
|
# if activation is None, and BiasAdd.next is the last op which is Identity
|
||||||
if conv2d_scope_name + '/BiasAdd' in self.edges:
|
if conv2d_scope_name + '/BiasAdd' in self.edges:
|
||||||
activation = self.edges[conv2d_scope_name + '/BiasAdd'][0]
|
anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
|
||||||
activation = activation.op
|
|
||||||
else:
|
else:
|
||||||
activation = 'None'
|
anode = None
|
||||||
return knode, bnode, dnode, activation
|
return knode, bnode, dnode, anode
|
||||||
|
|
||||||
|
|
||||||
def dump_conv2d_to_file(self, node, f):
|
def dump_conv2d_to_file(self, node, f):
|
||||||
@ -73,16 +123,21 @@ class TFConverter:
|
|||||||
self.converted_nodes.add(node.name)
|
self.converted_nodes.add(node.name)
|
||||||
|
|
||||||
scope_name = TFConverter.get_scope_name(node.name)
|
scope_name = TFConverter.get_scope_name(node.name)
|
||||||
#knode for kernel, bnode for bias, dnode for dilation
|
#knode for kernel, bnode for bias, dnode for dilation, anode for activation
|
||||||
knode, bnode, dnode, activation = self.get_conv2d_params(scope_name)
|
knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
|
||||||
|
|
||||||
if dnode is not None:
|
if dnode is not None:
|
||||||
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
|
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
|
||||||
else:
|
else:
|
||||||
dilation = 1
|
dilation = 1
|
||||||
|
|
||||||
|
if anode is not None:
|
||||||
|
activation = anode.op
|
||||||
|
else:
|
||||||
|
activation = 'None'
|
||||||
|
|
||||||
padding = node.attr['padding'].s.decode("utf-8")
|
padding = node.attr['padding'].s.decode("utf-8")
|
||||||
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use tricky.
|
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
|
||||||
if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
|
if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
|
||||||
if self.name_node_dict[scope_name + '/stack'].op == "Const":
|
if self.name_node_dict[scope_name + '/stack'].op == "Const":
|
||||||
padding = 'SAME'
|
padding = 'SAME'
|
||||||
@ -107,6 +162,15 @@ class TFConverter:
|
|||||||
bias = btensor.tensor_content
|
bias = btensor.tensor_content
|
||||||
f.write(bias)
|
f.write(bias)
|
||||||
|
|
||||||
|
input_name = self.conv2d_scopename_inputname_dict[scope_name]
|
||||||
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
|
||||||
|
|
||||||
|
if anode is not None:
|
||||||
|
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
|
||||||
|
else:
|
||||||
|
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
|
||||||
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_depth2space_to_file(self, node, f):
|
def dump_depth2space_to_file(self, node, f):
|
||||||
assert(node.op == 'DepthToSpace')
|
assert(node.op == 'DepthToSpace')
|
||||||
@ -114,6 +178,9 @@ class TFConverter:
|
|||||||
block_size = node.attr['block_size'].i
|
block_size = node.attr['block_size'].i
|
||||||
np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
|
np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
|
||||||
self.converted_nodes.add(node.name)
|
self.converted_nodes.add(node.name)
|
||||||
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
|
||||||
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
|
||||||
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_mirrorpad_to_file(self, node, f):
|
def dump_mirrorpad_to_file(self, node, f):
|
||||||
@ -127,6 +194,9 @@ class TFConverter:
|
|||||||
paddings = pnode.attr['value'].tensor.tensor_content
|
paddings = pnode.attr['value'].tensor.tensor_content
|
||||||
f.write(paddings)
|
f.write(paddings)
|
||||||
self.converted_nodes.add(node.name)
|
self.converted_nodes.add(node.name)
|
||||||
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
|
||||||
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
|
||||||
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_layers_to_file(self, f):
|
def dump_layers_to_file(self, f):
|
||||||
@ -147,10 +217,21 @@ class TFConverter:
|
|||||||
self.dump_mirrorpad_to_file(node, f)
|
self.dump_mirrorpad_to_file(node, f)
|
||||||
|
|
||||||
|
|
||||||
|
def dump_operands_to_file(self, f):
|
||||||
|
operands = sorted(self.name_operand_dict.values())
|
||||||
|
for operand in operands:
|
||||||
|
#print('{}'.format(operand))
|
||||||
|
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
|
||||||
|
f.write(operand.name.encode('utf-8'))
|
||||||
|
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
|
||||||
|
np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_to_file(self):
|
def dump_to_file(self):
|
||||||
with open(self.outfile, 'wb') as f:
|
with open(self.outfile, 'wb') as f:
|
||||||
self.dump_layers_to_file(f)
|
self.dump_layers_to_file(f)
|
||||||
np.array([self.layer_number], dtype=np.uint32).tofile(f)
|
self.dump_operands_to_file(f)
|
||||||
|
np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def generate_name_node_dict(self):
|
def generate_name_node_dict(self):
|
||||||
@ -212,19 +293,29 @@ class TFConverter:
|
|||||||
return name[0:index]
|
return name[0:index]
|
||||||
|
|
||||||
|
|
||||||
def generate_conv2d_scope_names(self):
|
def generate_conv2d_scope_info(self):
|
||||||
|
# conv2d is a sub block in graph, get the scope name
|
||||||
for node in self.nodes:
|
for node in self.nodes:
|
||||||
if node.op == 'Conv2D':
|
if node.op == 'Conv2D':
|
||||||
scope = TFConverter.get_scope_name(node.name)
|
scope = TFConverter.get_scope_name(node.name)
|
||||||
self.conv2d_scope_names.add(scope)
|
self.conv2d_scope_names.add(scope)
|
||||||
|
|
||||||
|
# get the input name to the conv2d sub block
|
||||||
|
for node in self.nodes:
|
||||||
|
scope = TFConverter.get_scope_name(node.name)
|
||||||
|
if scope in self.conv2d_scope_names:
|
||||||
|
if node.op == 'Conv2D' or node.op == 'Shape':
|
||||||
|
for inp in node.input:
|
||||||
|
if TFConverter.get_scope_name(inp) != scope:
|
||||||
|
self.conv2d_scopename_inputname_dict[scope] = inp
|
||||||
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
self.generate_name_node_dict()
|
self.generate_name_node_dict()
|
||||||
self.generate_output_names()
|
self.generate_output_names()
|
||||||
self.remove_identity()
|
self.remove_identity()
|
||||||
self.generate_edges()
|
self.generate_edges()
|
||||||
self.generate_conv2d_scope_names()
|
self.generate_conv2d_scope_info()
|
||||||
|
|
||||||
if self.dump4tb:
|
if self.dump4tb:
|
||||||
self.dump_for_tensorboard()
|
self.dump_for_tensorboard()
|
||||||
|
Reference in New Issue
Block a user