dnn_backend_native_layer_mathunary: add abs support
more math unary operations will be added here It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.subtract(x, 0.5) x2 = tf.abs(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
b6d6597bef
commit
f73cc61bf5
@ -6,6 +6,7 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_con
|
|||||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
|
||||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
|
||||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o
|
||||||
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o
|
||||||
|
|
||||||
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
||||||
|
|
||||||
|
@ -42,6 +42,7 @@ typedef enum {
|
|||||||
DLT_MIRROR_PAD = 3,
|
DLT_MIRROR_PAD = 3,
|
||||||
DLT_MAXIMUM = 4,
|
DLT_MAXIMUM = 4,
|
||||||
DLT_MATH_BINARY = 5,
|
DLT_MATH_BINARY = 5,
|
||||||
|
DLT_MATH_UNARY = 6,
|
||||||
DLT_COUNT
|
DLT_COUNT
|
||||||
} DNNLayerType;
|
} DNNLayerType;
|
||||||
|
|
||||||
|
80
libavfilter/dnn/dnn_backend_native_layer_mathunary.c
Normal file
80
libavfilter/dnn/dnn_backend_native_layer_mathunary.c
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (c) 2020
|
||||||
|
*
|
||||||
|
* This file is part of FFmpeg.
|
||||||
|
*
|
||||||
|
* FFmpeg is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with FFmpeg; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* DNN native backend implementation.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "dnn_backend_native.h"
|
||||||
|
#include "libavutil/avassert.h"
|
||||||
|
#include "dnn_backend_native_layer_mathunary.h"
|
||||||
|
|
||||||
|
int dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size)
|
||||||
|
{
|
||||||
|
DnnLayerMathUnaryParams *params;
|
||||||
|
int dnn_size = 0;
|
||||||
|
params = av_malloc(sizeof(*params));
|
||||||
|
if(!params)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
params->un_op = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 4;
|
||||||
|
layer->params = params;
|
||||||
|
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
|
||||||
|
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
|
||||||
|
dnn_size += 8;
|
||||||
|
|
||||||
|
return dnn_size;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
int dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
|
||||||
|
int32_t output_operand_index, const void *parameters)
|
||||||
|
{
|
||||||
|
const DnnOperand *input = &operands[input_operand_indexes[0]];
|
||||||
|
DnnOperand *output = &operands[output_operand_index];
|
||||||
|
const DnnLayerMathUnaryParams *params = (const DnnLayerMathUnaryParams *)parameters;
|
||||||
|
int dims_count;
|
||||||
|
const float *src;
|
||||||
|
float *dst;
|
||||||
|
|
||||||
|
for (int i = 0; i < 4; ++i)
|
||||||
|
output->dims[i] = input->dims[i];
|
||||||
|
|
||||||
|
output->data_type = input->data_type;
|
||||||
|
output->length = calculate_operand_data_length(output);
|
||||||
|
output->data = av_realloc(output->data, output->length);
|
||||||
|
if (!output->data)
|
||||||
|
return DNN_ERROR;
|
||||||
|
|
||||||
|
dims_count = calculate_operand_dims_count(output);
|
||||||
|
src = input->data;
|
||||||
|
dst = output->data;
|
||||||
|
|
||||||
|
switch (params->un_op) {
|
||||||
|
case DMUO_ABS:
|
||||||
|
for (int i = 0; i < dims_count; ++i)
|
||||||
|
dst[i] = FFABS(src[i]);
|
||||||
|
return 0;
|
||||||
|
default:
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
45
libavfilter/dnn/dnn_backend_native_layer_mathunary.h
Normal file
45
libavfilter/dnn/dnn_backend_native_layer_mathunary.h
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
/*
|
||||||
|
* Copyright (c) 2020
|
||||||
|
*
|
||||||
|
* This file is part of FFmpeg.
|
||||||
|
*
|
||||||
|
* FFmpeg is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* FFmpeg is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with FFmpeg; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* DNN inference functions interface for native backend.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
|
||||||
|
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
|
||||||
|
|
||||||
|
#include "libavformat/avio.h"
|
||||||
|
#include "dnn_backend_native.h"
|
||||||
|
|
||||||
|
typedef enum {
|
||||||
|
DMUO_ABS = 0,
|
||||||
|
DMUO_COUNT
|
||||||
|
} DNNMathUnaryOperation;
|
||||||
|
|
||||||
|
typedef struct DnnLayerMathUnaryParams{
|
||||||
|
DNNMathUnaryOperation un_op;
|
||||||
|
} DnnLayerMathUnaryParams;
|
||||||
|
|
||||||
|
int dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size);
|
||||||
|
int dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
|
||||||
|
int32_t output_operand_index, const void *parameters);
|
||||||
|
|
||||||
|
#endif
|
@ -25,6 +25,7 @@
|
|||||||
#include "dnn_backend_native_layer_depth2space.h"
|
#include "dnn_backend_native_layer_depth2space.h"
|
||||||
#include "dnn_backend_native_layer_maximum.h"
|
#include "dnn_backend_native_layer_maximum.h"
|
||||||
#include "dnn_backend_native_layer_mathbinary.h"
|
#include "dnn_backend_native_layer_mathbinary.h"
|
||||||
|
#include "dnn_backend_native_layer_mathunary.h"
|
||||||
|
|
||||||
LayerFunc layer_funcs[DLT_COUNT] = {
|
LayerFunc layer_funcs[DLT_COUNT] = {
|
||||||
{NULL, NULL},
|
{NULL, NULL},
|
||||||
@ -33,4 +34,5 @@ LayerFunc layer_funcs[DLT_COUNT] = {
|
|||||||
{dnn_execute_layer_pad, dnn_load_layer_pad},
|
{dnn_execute_layer_pad, dnn_load_layer_pad},
|
||||||
{dnn_execute_layer_maximum, dnn_load_layer_maximum},
|
{dnn_execute_layer_maximum, dnn_load_layer_maximum},
|
||||||
{dnn_execute_layer_math_binary, dnn_load_layer_math_binary},
|
{dnn_execute_layer_math_binary, dnn_load_layer_math_binary},
|
||||||
|
{dnn_execute_layer_math_unary, dnn_load_layer_math_unary},
|
||||||
};
|
};
|
||||||
|
@ -70,8 +70,9 @@ class TFConverter:
|
|||||||
self.converted_nodes = set()
|
self.converted_nodes = set()
|
||||||
self.conv2d_scope_names = set()
|
self.conv2d_scope_names = set()
|
||||||
self.conv2d_scopename_inputname_dict = {}
|
self.conv2d_scopename_inputname_dict = {}
|
||||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
|
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6}
|
||||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
|
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
|
||||||
|
self.mathun2code = {'Abs':0}
|
||||||
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
|
||||||
self.name_operand_dict = {}
|
self.name_operand_dict = {}
|
||||||
|
|
||||||
@ -286,6 +287,17 @@ class TFConverter:
|
|||||||
np.array([output_operand_index], dtype=np.uint32).tofile(f)
|
np.array([output_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
|
def dump_mathunary_to_file(self, node, f):
|
||||||
|
self.layer_number = self.layer_number + 1
|
||||||
|
self.converted_nodes.add(node.name)
|
||||||
|
i0_node = self.name_node_dict[node.input[0]]
|
||||||
|
np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
|
||||||
|
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
|
||||||
|
np.array([input_operand_index], dtype=np.uint32).tofile(f)
|
||||||
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
|
||||||
|
np.array([output_operand_index],dtype=np.uint32).tofile(f)
|
||||||
|
|
||||||
|
|
||||||
def dump_layers_to_file(self, f):
|
def dump_layers_to_file(self, f):
|
||||||
for node in self.nodes:
|
for node in self.nodes:
|
||||||
if node.name in self.converted_nodes:
|
if node.name in self.converted_nodes:
|
||||||
@ -307,6 +319,8 @@ class TFConverter:
|
|||||||
self.dump_maximum_to_file(node, f)
|
self.dump_maximum_to_file(node, f)
|
||||||
elif node.op in self.mathbin2code:
|
elif node.op in self.mathbin2code:
|
||||||
self.dump_mathbinary_to_file(node, f)
|
self.dump_mathbinary_to_file(node, f)
|
||||||
|
elif node.op in self.mathun2code:
|
||||||
|
self.dump_mathunary_to_file(node, f)
|
||||||
|
|
||||||
|
|
||||||
def dump_operands_to_file(self, f):
|
def dump_operands_to_file(self, f):
|
||||||
|
@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE'
|
|||||||
major = 1
|
major = 1
|
||||||
|
|
||||||
# increase minor when we don't have to re-convert the model file
|
# increase minor when we don't have to re-convert the model file
|
||||||
minor = 5
|
minor = 6
|
||||||
|
Loading…
x
Reference in New Issue
Block a user