Martin Storsjö 2ed67eba96 arm: Add NEON optimizations for 10 and 12 bit vp9 itxfm
This work is sponsored by, and copyright, Google.

This is structured similarly to the 8 bit version. In the 8 bit
version, the coefficients are 16 bits, and intermediates are 32 bits.

Here, the coefficients are 32 bit. For the 4x4 transforms for 10 bit
content, the intermediates also fit in 32 bits, but for all other
transforms (4x4 for 12 bit content, and 8x8 and larger for both 10
and 12 bit) the intermediates are 64 bit.

For the existing 8 bit case, the 8x8 transform fit all coefficients in
registers; for 10/12 bit, when the coefficients are 32 bit, the 8x8
transform also has to be done in slices of 4 pixels (just as 16x16 and
32x32 for 8 bit).

The slice width also shrinks from 4 elements to 2 elements in parallel
for the 16x16 and 32x32 cases.

The 16 bit coefficients from idct_coeffs and similar tables also need
to be lenghtened to 32 bit in order to be used in multiplication with
vectors with 32 bit elements. This leads to the fixed coefficient
vectors needing more space, leading to more cases where they have to
be reloaded within the transform (in iadst16).

This technically would need testing in checkasm for subpartitions
in increments of 2, but that slows down normal checkasm runs
excessively.

Examples of relative speedup compared to the C version, from checkasm:
                                     Cortex    A7     A8     A9    A53
vp9_inv_adst_adst_4x4_sub4_add_10_neon:      4.83  11.36   5.22   6.77
vp9_inv_adst_adst_8x8_sub8_add_10_neon:      4.12   7.60   4.06   4.84
vp9_inv_adst_adst_16x16_sub16_add_10_neon:   3.93   8.16   4.52   5.35
vp9_inv_dct_dct_4x4_sub1_add_10_neon:        1.36   2.57   1.41   1.61
vp9_inv_dct_dct_4x4_sub4_add_10_neon:        4.24   8.66   5.06   5.81
vp9_inv_dct_dct_8x8_sub1_add_10_neon:        2.63   4.18   1.68   2.87
vp9_inv_dct_dct_8x8_sub4_add_10_neon:        4.52   9.47   4.24   5.39
vp9_inv_dct_dct_8x8_sub8_add_10_neon:        3.45   7.34   3.45   4.30
vp9_inv_dct_dct_16x16_sub1_add_10_neon:      3.56   6.21   2.47   4.32
vp9_inv_dct_dct_16x16_sub2_add_10_neon:      5.68  12.73   5.28   7.07
vp9_inv_dct_dct_16x16_sub8_add_10_neon:      4.42   9.28   4.24   5.45
vp9_inv_dct_dct_16x16_sub16_add_10_neon:     3.41   7.29   3.35   4.19
vp9_inv_dct_dct_32x32_sub1_add_10_neon:      4.52   8.35   3.83   6.40
vp9_inv_dct_dct_32x32_sub2_add_10_neon:      5.86  13.19   6.14   7.04
vp9_inv_dct_dct_32x32_sub16_add_10_neon:     4.29   8.11   4.59   5.06
vp9_inv_dct_dct_32x32_sub32_add_10_neon:     3.31   5.70   3.56   3.84
vp9_inv_wht_wht_4x4_sub4_add_10_neon:        1.89   2.80   1.82   1.97

The speedup compared to the C functions is around 1.3 to 7x for the
full transforms, even higher for the smaller subpartitions.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-01-24 22:35:56 +02:00
2017-01-24 10:20:10 +01:00
2017-01-24 10:20:10 +01:00
2016-11-27 20:46:20 +01:00
2016-10-26 20:52:43 +02:00

FFmpeg README

FFmpeg is a collection of libraries and tools to process multimedia content such as audio, video, subtitles and related metadata.

Libraries

  • libavcodec provides implementation of a wider range of codecs.
  • libavformat implements streaming protocols, container formats and basic I/O access.
  • libavutil includes hashers, decompressors and miscellaneous utility functions.
  • libavfilter provides a mean to alter decoded Audio and Video through chain of filters.
  • libavdevice provides an abstraction to access capture and playback devices.
  • libswresample implements audio mixing and resampling routines.
  • libswscale implements color conversion and scaling routines.

Tools

  • ffmpeg is a command line toolbox to manipulate, convert and stream multimedia content.
  • ffplay is a minimalistic multimedia player.
  • ffprobe is a simple analysis tool to inspect multimedia content.
  • ffserver is a multimedia streaming server for live broadcasts.
  • Additional small tools such as aviocat, ismindex and qt-faststart.

Documentation

The offline documentation is available in the doc/ directory.

The online documentation is available in the main website and in the wiki.

Examples

Coding examples are available in the doc/examples directory.

License

FFmpeg codebase is mainly LGPL-licensed with optional components licensed under GPL. Please refer to the LICENSE file for detailed information.

Contributing

Patches should be submitted to the ffmpeg-devel mailing list using git format-patch or git send-email. Github pull requests should be avoided because they are not part of our review process and will be ignored.

Description
No description provided
Readme 209 MiB
Languages
C 90.4%
Assembly 7.7%
Makefile 1.3%
C++ 0.2%
Objective-C 0.2%
Other 0.1%