mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-03-29 11:11:53 +01:00
routing: implement bimodal probability estimator
Implements a new probability estimator based on a probability theory framework. The computed probability consists of: * the direct channel probability, which is estimated based on a depleted liquidity distribution model, formulas and broader concept derived after Pickhardt et al. https://arxiv.org/abs/2103.08576 * an extension of the probability model to incorporate knowledge decay after time for previous successes and failures * a mixed node probability taking into account successes/failures on other channels of the node (similar to the apriori approach)
This commit is contained in:
parent
b8c6227383
commit
686816d784
docs/release-notes
routing
@ -389,6 +389,16 @@ in the lnwire package](https://github.com/lightningnetwork/lnd/pull/7303)
|
||||
|
||||
* [Pathfinding takes capacity of edges into account to improve success
|
||||
probability estimation.](https://github.com/lightningnetwork/lnd/pull/6857)
|
||||
* [A new probability model ("bimodal") is added which models channel based
|
||||
liquidities within a probability theory framework.](
|
||||
https://github.com/lightningnetwork/lnd/pull/6815)
|
||||
|
||||
## Configuration
|
||||
* Note that [this pathfinding change](https://github.com/lightningnetwork/lnd/pull/6815)
|
||||
introduces a breaking change in lnd.conf apriori parameters under the routing
|
||||
section, see sample-lnd.conf for an updated configuration. The behavior of
|
||||
`lncli setmccfg/getmccfg` is altered as well.
|
||||
|
||||
|
||||
### Tooling and documentation
|
||||
|
||||
@ -445,6 +455,7 @@ refactor the itest for code health and maintenance.
|
||||
* Alyssa Hertig
|
||||
* andreihod
|
||||
* Antoni Spaanderman
|
||||
* bitromortac
|
||||
* Carla Kirk-Cohen
|
||||
* Carsten Otto
|
||||
* Chris Geihsler
|
||||
|
@ -87,6 +87,8 @@ func (c *estimatorTestContext) assertPairProbability(now time.Time,
|
||||
// TestProbabilityEstimatorNoResults tests the probability estimation when no
|
||||
// results are available.
|
||||
func TestProbabilityEstimatorNoResults(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ctx := newEstimatorTestContext(t)
|
||||
|
||||
// A zero amount does not trigger capacity rescaling.
|
||||
@ -104,6 +106,8 @@ func TestProbabilityEstimatorNoResults(t *testing.T) {
|
||||
// TestProbabilityEstimatorOneSuccess tests the probability estimation for nodes
|
||||
// that have a single success result.
|
||||
func TestProbabilityEstimatorOneSuccess(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ctx := newEstimatorTestContext(t)
|
||||
|
||||
ctx.results = map[int]TimedPairResult{
|
||||
@ -144,6 +148,8 @@ func TestProbabilityEstimatorOneSuccess(t *testing.T) {
|
||||
// TestProbabilityEstimatorOneFailure tests the probability estimation for nodes
|
||||
// that have a single failure.
|
||||
func TestProbabilityEstimatorOneFailure(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ctx := newEstimatorTestContext(t)
|
||||
|
||||
ctx.results = map[int]TimedPairResult{
|
||||
@ -171,6 +177,8 @@ func TestProbabilityEstimatorOneFailure(t *testing.T) {
|
||||
// TestProbabilityEstimatorMix tests the probability estimation for nodes for
|
||||
// which a mix of successes and failures is recorded.
|
||||
func TestProbabilityEstimatorMix(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ctx := newEstimatorTestContext(t)
|
||||
|
||||
ctx.results = map[int]TimedPairResult{
|
||||
|
536
routing/probability_bimodal.go
Normal file
536
routing/probability_bimodal.go
Normal file
@ -0,0 +1,536 @@
|
||||
package routing
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/btcsuite/btcd/btcutil"
|
||||
"github.com/go-errors/errors"
|
||||
"github.com/lightningnetwork/lnd/lnwire"
|
||||
"github.com/lightningnetwork/lnd/routing/route"
|
||||
)
|
||||
|
||||
const (
|
||||
// DefaultBimodalScaleMsat is the default value for BimodalScaleMsat in
|
||||
// BimodalConfig. It describes the distribution of funds in the LN based
|
||||
// on empirical findings. We assume an unbalanced network by default.
|
||||
DefaultBimodalScaleMsat = lnwire.MilliSatoshi(300_000_000)
|
||||
|
||||
// DefaultBimodalNodeWeight is the default value for the
|
||||
// BimodalNodeWeight in BimodalConfig. It is chosen such that past
|
||||
// forwardings on other channels of a router are only slightly taken
|
||||
// into account.
|
||||
DefaultBimodalNodeWeight = 0.2
|
||||
|
||||
// DefaultBimodalDecayTime is the default value for BimodalDecayTime.
|
||||
// We will forget about previous learnings about channel liquidity on
|
||||
// the timescale of about a week.
|
||||
DefaultBimodalDecayTime = 7 * 24 * time.Hour
|
||||
|
||||
// BimodalScaleMsatLimit is the maximum value for BimodalScaleMsat to
|
||||
// avoid numerical issues.
|
||||
BimodalScaleMsatMax = lnwire.MilliSatoshi(21e17)
|
||||
|
||||
// BimodalEstimatorName is used to identify the bimodal estimator.
|
||||
BimodalEstimatorName = "bimodal"
|
||||
)
|
||||
|
||||
var (
|
||||
// ErrInvalidScale is returned when we get a scale below or equal zero.
|
||||
ErrInvalidScale = errors.New("scale must be >= 0 and sane")
|
||||
|
||||
// ErrInvalidNodeWeight is returned when we get a node weight that is
|
||||
// out of range.
|
||||
ErrInvalidNodeWeight = errors.New("node weight must be in [0, 1]")
|
||||
|
||||
// ErrInvalidDecayTime is returned when we get a decay time below zero.
|
||||
ErrInvalidDecayTime = errors.New("decay time must be larger than zero")
|
||||
)
|
||||
|
||||
// BimodalConfig contains configuration for our probability estimator.
|
||||
type BimodalConfig struct {
|
||||
// BimodalNodeWeight defines how strongly other previous forwardings on
|
||||
// channels of a router should be taken into account when computing a
|
||||
// channel's probability to route. The allowed values are in the range
|
||||
// [0, 1], where a value of 0 means that only direct information about a
|
||||
// channel is taken into account.
|
||||
BimodalNodeWeight float64
|
||||
|
||||
// BimodalScaleMsat describes the scale over which channels
|
||||
// statistically have some liquidity left. The value determines how
|
||||
// quickly the bimodal distribution drops off from the edges of a
|
||||
// channel. A larger value (compared to typical channel capacities)
|
||||
// means that the drop off is slow and that channel balances are
|
||||
// distributed more uniformly. A small value leads to the assumption of
|
||||
// very unbalanced channels.
|
||||
BimodalScaleMsat lnwire.MilliSatoshi
|
||||
|
||||
// BimodalDecayTime is the scale for the exponential information decay
|
||||
// over time for previous successes or failures.
|
||||
BimodalDecayTime time.Duration
|
||||
}
|
||||
|
||||
// validate checks the configuration of the estimator for allowed values.
|
||||
func (p BimodalConfig) validate() error {
|
||||
if p.BimodalDecayTime <= 0 {
|
||||
return fmt.Errorf("%v: %w", BimodalEstimatorName,
|
||||
ErrInvalidDecayTime)
|
||||
}
|
||||
|
||||
if p.BimodalNodeWeight < 0 || p.BimodalNodeWeight > 1 {
|
||||
return fmt.Errorf("%v: %w", BimodalEstimatorName,
|
||||
ErrInvalidNodeWeight)
|
||||
}
|
||||
|
||||
if p.BimodalScaleMsat == 0 || p.BimodalScaleMsat > BimodalScaleMsatMax {
|
||||
return fmt.Errorf("%v: %w", BimodalEstimatorName,
|
||||
ErrInvalidScale)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// DefaultBimodalConfig returns the default configuration for the estimator.
|
||||
func DefaultBimodalConfig() BimodalConfig {
|
||||
return BimodalConfig{
|
||||
BimodalNodeWeight: DefaultBimodalNodeWeight,
|
||||
BimodalScaleMsat: DefaultBimodalScaleMsat,
|
||||
BimodalDecayTime: DefaultBimodalDecayTime,
|
||||
}
|
||||
}
|
||||
|
||||
// BimodalEstimator returns node and pair probabilities based on historical
|
||||
// payment results based on a liquidity distribution model of the LN. The main
|
||||
// function is to estimate the direct channel probability based on a depleted
|
||||
// liquidity distribution model, with additional information decay over time. A
|
||||
// per-node probability can be mixed with the direct probability, taking into
|
||||
// account successes/failures on other channels of the forwarder.
|
||||
type BimodalEstimator struct {
|
||||
// BimodalConfig contains configuration options for our estimator.
|
||||
BimodalConfig
|
||||
}
|
||||
|
||||
// NewBimodalEstimator creates a new BimodalEstimator.
|
||||
func NewBimodalEstimator(cfg BimodalConfig) (*BimodalEstimator, error) {
|
||||
if err := cfg.validate(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &BimodalEstimator{
|
||||
BimodalConfig: cfg,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Compile-time checks that interfaces are implemented.
|
||||
var _ Estimator = (*BimodalEstimator)(nil)
|
||||
var _ estimatorConfig = (*BimodalConfig)(nil)
|
||||
|
||||
// config returns the current configuration of the estimator.
|
||||
func (p *BimodalEstimator) Config() estimatorConfig {
|
||||
return p.BimodalConfig
|
||||
}
|
||||
|
||||
// String returns the estimator's configuration as a string representation.
|
||||
func (p *BimodalEstimator) String() string {
|
||||
return fmt.Sprintf("estimator type: %v, decay time: %v, liquidity "+
|
||||
"scale: %v, node weight: %v", BimodalEstimatorName,
|
||||
p.BimodalDecayTime, p.BimodalScaleMsat, p.BimodalNodeWeight)
|
||||
}
|
||||
|
||||
// PairProbability estimates the probability of successfully traversing to
|
||||
// toNode based on historical payment outcomes for the from node. Those outcomes
|
||||
// are passed in via the results parameter.
|
||||
func (p *BimodalEstimator) PairProbability(now time.Time,
|
||||
results NodeResults, toNode route.Vertex, amt lnwire.MilliSatoshi,
|
||||
capacity btcutil.Amount) float64 {
|
||||
|
||||
// We first compute the probability for the desired hop taking into
|
||||
// account previous knowledge.
|
||||
directProbability := p.directProbability(
|
||||
now, results, toNode, amt, lnwire.NewMSatFromSatoshis(capacity),
|
||||
)
|
||||
|
||||
// The final probability is computed by taking into account other
|
||||
// channels of the from node.
|
||||
return p.calculateProbability(directProbability, now, results, toNode)
|
||||
}
|
||||
|
||||
// LocalPairProbability computes the probability to reach toNode given a set of
|
||||
// previous learnings.
|
||||
func (p *BimodalEstimator) LocalPairProbability(now time.Time,
|
||||
results NodeResults, toNode route.Vertex) float64 {
|
||||
|
||||
// For direct local probabilities we assume to know exactly how much we
|
||||
// can send over a channel, which assumes that channels are active and
|
||||
// have enough liquidity.
|
||||
directProbability := 1.0
|
||||
|
||||
// If we had an unexpected failure for this node, we reduce the
|
||||
// probability for some time to avoid infinite retries.
|
||||
result, ok := results[toNode]
|
||||
if ok && !result.FailTime.IsZero() {
|
||||
timeAgo := now.Sub(result.FailTime)
|
||||
|
||||
// We only expect results in the past to get a probability
|
||||
// between 0 and 1.
|
||||
if timeAgo < 0 {
|
||||
timeAgo = 0
|
||||
}
|
||||
exponent := -float64(timeAgo) / float64(p.BimodalDecayTime)
|
||||
directProbability -= math.Exp(exponent)
|
||||
}
|
||||
|
||||
return directProbability
|
||||
}
|
||||
|
||||
// directProbability computes the probability to reach a node based on the
|
||||
// liquidity distribution in the LN.
|
||||
func (p *BimodalEstimator) directProbability(now time.Time,
|
||||
results NodeResults, toNode route.Vertex, amt lnwire.MilliSatoshi,
|
||||
capacity lnwire.MilliSatoshi) float64 {
|
||||
|
||||
// We first determine the time-adjusted success and failure amounts to
|
||||
// then compute a probability. We know that we can send a zero amount.
|
||||
successAmount := lnwire.MilliSatoshi(0)
|
||||
|
||||
// We know that we cannot send the full capacity.
|
||||
failAmount := capacity
|
||||
|
||||
// If we have information about past successes or failures, we modify
|
||||
// them with a time decay.
|
||||
result, ok := results[toNode]
|
||||
if ok {
|
||||
// Apply a time decay for the amount we cannot send.
|
||||
if !result.FailTime.IsZero() {
|
||||
failAmount = cannotSend(
|
||||
result.FailAmt, capacity, now, result.FailTime,
|
||||
p.BimodalDecayTime,
|
||||
)
|
||||
}
|
||||
|
||||
// Apply a time decay for the amount we can send.
|
||||
if !result.SuccessTime.IsZero() {
|
||||
successAmount = canSend(
|
||||
result.SuccessAmt, now, result.SuccessTime,
|
||||
p.BimodalDecayTime,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the direct channel probability.
|
||||
probability, err := p.probabilityFormula(
|
||||
capacity, successAmount, failAmount, amt,
|
||||
)
|
||||
if err != nil {
|
||||
log.Errorf("error computing probability: %v", err)
|
||||
|
||||
return 0.0
|
||||
}
|
||||
|
||||
return probability
|
||||
}
|
||||
|
||||
// calculateProbability computes the total hop probability combining the channel
|
||||
// probability and historic forwarding data of other channels of the node we try
|
||||
// to send from.
|
||||
//
|
||||
// Goals:
|
||||
// * We want to incentivize good routing nodes: the more routable channels a
|
||||
// node has, the more we want to incentivize (vice versa for failures).
|
||||
// -> We reduce/increase the direct probability depending on past
|
||||
// failures/successes for other channels of the node.
|
||||
//
|
||||
// * We want to be forgiving/give other nodes a chance as well: we want to
|
||||
// forget about (non-)routable channels over time.
|
||||
// -> We weight the successes/failures with a time decay such that they will not
|
||||
// influence the total probability if a long time went by.
|
||||
//
|
||||
// * If we don't have other info, we want to solely rely on the direct
|
||||
// probability.
|
||||
//
|
||||
// * We want to be able to specify how important the other channels are compared
|
||||
// to the direct channel.
|
||||
// -> Introduce a node weight factor that weights the direct probability against
|
||||
// the node-wide average. The larger the node weight, the more important other
|
||||
// channels of the node are.
|
||||
//
|
||||
// How do failures on low fee nodes redirect routing to higher fee nodes?
|
||||
// Assumptions:
|
||||
// * attemptCostPPM of 1000 PPM
|
||||
// * constant direct channel probability of P0 (usually 0.5 for large amounts)
|
||||
// * node weight w of 0.2
|
||||
//
|
||||
// The question we want to answer is:
|
||||
// How often would a zero-fee node be tried (even if there were failures for its
|
||||
// other channels) over trying a high-fee node with 2000 PPM and no direct
|
||||
// knowledge about the channel to send over?
|
||||
//
|
||||
// The probability of a route of length l is P(l) = l * P0.
|
||||
//
|
||||
// The total probability after n failures (with the implemented method here) is:
|
||||
// P(l, n) = P(l-1) * P(n)
|
||||
// = P(l-1) * (P0 + n*0) / (1 + n*w)
|
||||
// = P(l) / (1 + n*w)
|
||||
//
|
||||
// Condition for a high-fee channel to overcome a low fee channel in the
|
||||
// Dijkstra weight function (only looking at fee and probability PPM terms):
|
||||
// highFeePPM + attemptCostPPM * 1/P(l) = 0PPM + attemptCostPPM * 1/P(l, n)
|
||||
// highFeePPM/attemptCostPPM = 1/P(l, n) - 1/P(l) =
|
||||
// = (1 + n*w)/P(l) - 1/P(l) =
|
||||
// = n*w/P(l)
|
||||
//
|
||||
// Therefore:
|
||||
// n = (highFeePPM/attemptCostPPM) * (P(l)/w) =
|
||||
// = (2000/1000) * 0.5 * l / w = l/w
|
||||
//
|
||||
// For a one-hop route we get:
|
||||
// n = 1/0.2 = 5 tolerated failures
|
||||
//
|
||||
// For a three-hop route we get:
|
||||
// n = 3/0.2 = 15 tolerated failures
|
||||
//
|
||||
// For more details on the behavior see tests.
|
||||
func (p *BimodalEstimator) calculateProbability(directProbability float64,
|
||||
now time.Time, results NodeResults, toNode route.Vertex) float64 {
|
||||
|
||||
// If we don't take other channels into account, we can return early.
|
||||
if p.BimodalNodeWeight == 0.0 {
|
||||
return directProbability
|
||||
}
|
||||
|
||||
// w is a parameter which determines how strongly the other channels of
|
||||
// a node should be incorporated, the higher the stronger.
|
||||
w := p.BimodalNodeWeight
|
||||
|
||||
// dt determines the timeliness of the previous successes/failures
|
||||
// to be taken into account.
|
||||
dt := float64(p.BimodalDecayTime)
|
||||
|
||||
// The direct channel probability is weighted fully, all other results
|
||||
// are weighted according to how recent the information is.
|
||||
totalProbabilities := directProbability
|
||||
totalWeights := 1.0
|
||||
|
||||
for peer, result := range results {
|
||||
// We don't include the direct hop probability here because it
|
||||
// is already included in totalProbabilities.
|
||||
if peer == toNode {
|
||||
continue
|
||||
}
|
||||
|
||||
// We add probabilities weighted by how recent the info is.
|
||||
var weight float64
|
||||
if result.SuccessAmt > 0 {
|
||||
exponent := -float64(now.Sub(result.SuccessTime)) / dt
|
||||
weight = math.Exp(exponent)
|
||||
totalProbabilities += w * weight
|
||||
totalWeights += w * weight
|
||||
}
|
||||
if result.FailAmt > 0 {
|
||||
exponent := -float64(now.Sub(result.FailTime)) / dt
|
||||
weight = math.Exp(exponent)
|
||||
|
||||
// Failures don't add to total success probability.
|
||||
totalWeights += w * weight
|
||||
}
|
||||
}
|
||||
|
||||
return totalProbabilities / totalWeights
|
||||
}
|
||||
|
||||
// canSend returns the sendable amount over the channel, respecting time decay.
|
||||
// canSend approaches zero, if we wait for a much longer time than the decay
|
||||
// time.
|
||||
func canSend(successAmount lnwire.MilliSatoshi, now, successTime time.Time,
|
||||
decayConstant time.Duration) lnwire.MilliSatoshi {
|
||||
|
||||
// The factor approaches 0 for successTime a long time in the past,
|
||||
// is 1 when the successTime is now.
|
||||
factor := math.Exp(
|
||||
-float64(now.Sub(successTime)) / float64(decayConstant),
|
||||
)
|
||||
|
||||
canSend := factor * float64(successAmount)
|
||||
|
||||
return lnwire.MilliSatoshi(canSend)
|
||||
}
|
||||
|
||||
// cannotSend returns the not sendable amount over the channel, respecting time
|
||||
// decay. cannotSend approaches the capacity, if we wait for a much longer time
|
||||
// than the decay time.
|
||||
func cannotSend(failAmount, capacity lnwire.MilliSatoshi, now,
|
||||
failTime time.Time, decayConstant time.Duration) lnwire.MilliSatoshi {
|
||||
|
||||
if failAmount > capacity {
|
||||
failAmount = capacity
|
||||
}
|
||||
|
||||
// The factor approaches 0 for failTime a long time in the past and it
|
||||
// is 1 when the failTime is now.
|
||||
factor := math.Exp(
|
||||
-float64(now.Sub(failTime)) / float64(decayConstant),
|
||||
)
|
||||
|
||||
cannotSend := capacity - lnwire.MilliSatoshi(
|
||||
factor*float64(capacity-failAmount),
|
||||
)
|
||||
|
||||
return cannotSend
|
||||
}
|
||||
|
||||
// primitive computes the indefinite integral of our assumed (normalized)
|
||||
// liquidity probability distribution. The distribution of liquidity x here is
|
||||
// the function P(x) ~ exp(-x/s) + exp((x-c)/s), i.e., two exponentials residing
|
||||
// at the ends of channels. This means that we expect liquidity to be at either
|
||||
// side of the channel with capacity c. The s parameter (scale) defines how far
|
||||
// the liquidity leaks into the channel. A very low scale assumes completely
|
||||
// unbalanced channels, a very high scale assumes a random distribution. More
|
||||
// details can be found in
|
||||
// https://github.com/lightningnetwork/lnd/issues/5988#issuecomment-1131234858.
|
||||
func (p *BimodalEstimator) primitive(c, x float64) float64 {
|
||||
s := float64(p.BimodalScaleMsat)
|
||||
|
||||
// The indefinite integral of P(x) is given by
|
||||
// Int P(x) dx = H(x) = s * (-e(-x/s) + e((x-c)/s)),
|
||||
// and its norm from 0 to c can be computed from it,
|
||||
// norm = [H(x)]_0^c = s * (-e(-c/s) + 1 -(1 + e(-c/s))).
|
||||
ecs := math.Exp(-c / s)
|
||||
exs := math.Exp(-x / s)
|
||||
|
||||
// It would be possible to split the next term and reuse the factors
|
||||
// from before, but this can lead to numerical issues with large
|
||||
// numbers.
|
||||
excs := math.Exp((x - c) / s)
|
||||
|
||||
// norm can only become zero, if c is zero, which we sorted out before
|
||||
// calling this method.
|
||||
norm := -2*ecs + 2
|
||||
|
||||
// We end up with the primitive function of the normalized P(x).
|
||||
return (-exs + excs) / norm
|
||||
}
|
||||
|
||||
// integral computes the integral of our liquidity distribution from the lower
|
||||
// to the upper value.
|
||||
func (p *BimodalEstimator) integral(capacity, lower, upper float64) float64 {
|
||||
if lower < 0 || lower > upper {
|
||||
log.Errorf("probability integral limits nonsensical: capacity:"+
|
||||
"%v lower: %v upper: %v", capacity, lower, upper)
|
||||
|
||||
return 0.0
|
||||
}
|
||||
|
||||
return p.primitive(capacity, upper) - p.primitive(capacity, lower)
|
||||
}
|
||||
|
||||
// probabilityFormula computes the expected probability for a payment of
|
||||
// amountMsat given prior learnings for a channel of certain capacity.
|
||||
// successAmountMsat and failAmountMsat stand for the unsettled success and
|
||||
// failure amounts, respectively. The formula is derived using the formalism
|
||||
// presented in Pickhardt et al., https://arxiv.org/abs/2103.08576.
|
||||
func (p *BimodalEstimator) probabilityFormula(capacityMsat, successAmountMsat,
|
||||
failAmountMsat, amountMsat lnwire.MilliSatoshi) (float64, error) {
|
||||
|
||||
// Convert to positive-valued floats.
|
||||
capacity := float64(capacityMsat)
|
||||
successAmount := float64(successAmountMsat)
|
||||
failAmount := float64(failAmountMsat)
|
||||
amount := float64(amountMsat)
|
||||
|
||||
// Capacity being zero is a sentinel value to ignore the probability
|
||||
// estimation, we'll return the full probability here.
|
||||
if capacity == 0.0 {
|
||||
return 1.0, nil
|
||||
}
|
||||
|
||||
// We cannot send more than the capacity.
|
||||
if amount > capacity {
|
||||
return 0.0, nil
|
||||
}
|
||||
|
||||
// Mission control may have some outdated values, we correct them here.
|
||||
// TODO(bitromortac): there may be better decisions to make in these
|
||||
// cases, e.g., resetting failAmount=cap and successAmount=0.
|
||||
|
||||
// failAmount should be capacity at max.
|
||||
if failAmount > capacity {
|
||||
failAmount = capacity
|
||||
}
|
||||
|
||||
// successAmount should be capacity at max.
|
||||
if successAmount > capacity {
|
||||
successAmount = capacity
|
||||
}
|
||||
|
||||
// The next statement is a safety check against an illogical condition,
|
||||
// otherwise the renormalization integral would become zero. This may
|
||||
// happen if a large channel gets closed and smaller ones remain, but
|
||||
// it should recover with the time decay.
|
||||
if failAmount <= successAmount {
|
||||
log.Tracef("fail amount (%v) is larger than or equal the "+
|
||||
"success amount (%v) for capacity (%v)",
|
||||
failAmountMsat, successAmountMsat, capacityMsat)
|
||||
|
||||
return 0.0, nil
|
||||
}
|
||||
|
||||
// We cannot send more than the fail amount.
|
||||
if amount >= failAmount {
|
||||
return 0.0, nil
|
||||
}
|
||||
|
||||
// The success probability for payment amount a is the integral over the
|
||||
// prior distribution P(x), the probability to find liquidity between
|
||||
// the amount a and channel capacity c (or failAmount a_f):
|
||||
// P(X >= a | X < a_f) = Integral_{a}^{a_f} P(x) dx
|
||||
prob := p.integral(capacity, amount, failAmount)
|
||||
if math.IsNaN(prob) {
|
||||
return 0.0, fmt.Errorf("non-normalized probability is NaN, "+
|
||||
"capacity: %v, amount: %v, fail amount: %v",
|
||||
capacity, amount, failAmount)
|
||||
}
|
||||
|
||||
// If we have payment information, we need to adjust the prior
|
||||
// distribution P(x) and get the posterior distribution by renormalizing
|
||||
// the prior distribution in such a way that the probability mass lies
|
||||
// between a_s and a_f.
|
||||
reNorm := p.integral(capacity, successAmount, failAmount)
|
||||
if math.IsNaN(reNorm) {
|
||||
return 0.0, fmt.Errorf("normalization factor is NaN, "+
|
||||
"capacity: %v, success amount: %v, fail amount: %v",
|
||||
capacity, successAmount, failAmount)
|
||||
}
|
||||
|
||||
// The normalization factor can only be zero if the success amount is
|
||||
// equal or larger than the fail amount. This should not happen as we
|
||||
// have checked this scenario above.
|
||||
if reNorm == 0.0 {
|
||||
return 0.0, fmt.Errorf("normalization factor is zero, "+
|
||||
"capacity: %v, success amount: %v, fail amount: %v",
|
||||
capacity, successAmount, failAmount)
|
||||
}
|
||||
|
||||
prob /= reNorm
|
||||
|
||||
// Note that for payment amounts smaller than successAmount, we can get
|
||||
// a value larger than unity, which we cap here to get a proper
|
||||
// probability.
|
||||
if prob > 1.0 {
|
||||
if amount > successAmount {
|
||||
return 0.0, fmt.Errorf("unexpected large probability "+
|
||||
"(%v) capacity: %v, amount: %v, success "+
|
||||
"amount: %v, fail amount: %v", prob, capacity,
|
||||
amount, successAmount, failAmount)
|
||||
}
|
||||
|
||||
return 1.0, nil
|
||||
} else if prob < 0.0 {
|
||||
return 0.0, fmt.Errorf("negative probability "+
|
||||
"(%v) capacity: %v, amount: %v, success "+
|
||||
"amount: %v, fail amount: %v", prob, capacity,
|
||||
amount, successAmount, failAmount)
|
||||
}
|
||||
|
||||
return prob, nil
|
||||
}
|
664
routing/probability_bimodal_test.go
Normal file
664
routing/probability_bimodal_test.go
Normal file
@ -0,0 +1,664 @@
|
||||
package routing
|
||||
|
||||
import (
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/lightningnetwork/lnd/lnwire"
|
||||
"github.com/lightningnetwork/lnd/routing/route"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
const (
|
||||
smallAmount = lnwire.MilliSatoshi(400_000)
|
||||
largeAmount = lnwire.MilliSatoshi(5_000_000)
|
||||
capacity = lnwire.MilliSatoshi(10_000_000)
|
||||
scale = lnwire.MilliSatoshi(400_000)
|
||||
)
|
||||
|
||||
// TestSuccessProbability tests that we get correct probability estimates for
|
||||
// the direct channel probability.
|
||||
func TestSuccessProbability(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
expectedProbability float64
|
||||
tolerance float64
|
||||
successAmount lnwire.MilliSatoshi
|
||||
failAmount lnwire.MilliSatoshi
|
||||
amount lnwire.MilliSatoshi
|
||||
capacity lnwire.MilliSatoshi
|
||||
}{
|
||||
// We can't send more than the capacity.
|
||||
{
|
||||
name: "no info, larger than capacity",
|
||||
capacity: capacity,
|
||||
successAmount: 0,
|
||||
failAmount: capacity,
|
||||
amount: capacity + 1,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// With the current model we don't prefer any channels if the
|
||||
// send amount is large compared to the scale but small compared
|
||||
// to the capacity.
|
||||
{
|
||||
name: "no info, large amount",
|
||||
capacity: capacity,
|
||||
successAmount: 0,
|
||||
failAmount: capacity,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 0.5,
|
||||
},
|
||||
// We always expect to be able to "send" an amount of 0.
|
||||
{
|
||||
name: "no info, zero amount",
|
||||
capacity: capacity,
|
||||
successAmount: 0,
|
||||
failAmount: capacity,
|
||||
amount: 0,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// We can't send the whole capacity.
|
||||
{
|
||||
name: "no info, full capacity",
|
||||
capacity: capacity,
|
||||
successAmount: 0,
|
||||
failAmount: capacity,
|
||||
amount: capacity,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// Sending a small amount will have a higher probability to go
|
||||
// through than a large amount.
|
||||
{
|
||||
name: "no info, small amount",
|
||||
capacity: capacity,
|
||||
successAmount: 0,
|
||||
failAmount: capacity,
|
||||
amount: smallAmount,
|
||||
expectedProbability: 0.684,
|
||||
tolerance: 0.001,
|
||||
},
|
||||
// If we had an unsettled success, we are sure we can send a
|
||||
// lower amount.
|
||||
{
|
||||
name: "previous success, lower amount",
|
||||
capacity: capacity,
|
||||
successAmount: largeAmount,
|
||||
failAmount: capacity,
|
||||
amount: smallAmount,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// If we had an unsettled success, we are sure we can send the
|
||||
// same amount.
|
||||
{
|
||||
name: "previous success, success amount",
|
||||
capacity: capacity,
|
||||
successAmount: largeAmount,
|
||||
failAmount: capacity,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// If we had an unsettled success with a small amount, we know
|
||||
// with increased probability that we can send a comparable
|
||||
// higher amount.
|
||||
{
|
||||
name: "previous success, larger amount",
|
||||
capacity: capacity,
|
||||
successAmount: smallAmount / 2,
|
||||
failAmount: capacity,
|
||||
amount: smallAmount,
|
||||
expectedProbability: 0.851,
|
||||
tolerance: 0.001,
|
||||
},
|
||||
// If we had a large unsettled success before, we know we can
|
||||
// send even larger payments with high probability.
|
||||
{
|
||||
name: "previous large success, larger " +
|
||||
"amount",
|
||||
capacity: capacity,
|
||||
successAmount: largeAmount / 2,
|
||||
failAmount: capacity,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 0.998,
|
||||
tolerance: 0.001,
|
||||
},
|
||||
// If we had a failure before, we can't send with the fail
|
||||
// amount.
|
||||
{
|
||||
name: "previous failure, fail amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// We can't send a higher amount than the fail amount either.
|
||||
{
|
||||
name: "previous failure, larger fail " +
|
||||
"amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
amount: largeAmount + smallAmount,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// We expect a diminished non-zero probability if we try to send
|
||||
// an amount that's lower than the last fail amount.
|
||||
{
|
||||
name: "previous failure, lower than fail " +
|
||||
"amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
amount: smallAmount,
|
||||
expectedProbability: 0.368,
|
||||
tolerance: 0.001,
|
||||
},
|
||||
// From here on we deal with mixed previous successes and
|
||||
// failures.
|
||||
// We expect to be always able to send a tiny amount.
|
||||
{
|
||||
name: "previous f/s, very small amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
successAmount: smallAmount,
|
||||
amount: 0,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// We expect to be able to send up to the previous success
|
||||
// amount will full certainty.
|
||||
{
|
||||
name: "previous f/s, success amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
successAmount: smallAmount,
|
||||
amount: smallAmount,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// This tests a random value between small amount and large
|
||||
// amount.
|
||||
{
|
||||
name: "previous f/s, between f/s",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
successAmount: smallAmount,
|
||||
amount: smallAmount + largeAmount/10,
|
||||
expectedProbability: 0.287,
|
||||
tolerance: 0.001,
|
||||
},
|
||||
// We still can't send the fail amount.
|
||||
{
|
||||
name: "previous f/s, fail amount",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
successAmount: smallAmount,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// Same success and failure amounts (illogical).
|
||||
{
|
||||
name: "previous f/s, same",
|
||||
capacity: capacity,
|
||||
failAmount: largeAmount,
|
||||
successAmount: largeAmount,
|
||||
amount: largeAmount,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
// Higher success than failure amount (illogical).
|
||||
{
|
||||
name: "previous f/s, higher success",
|
||||
capacity: capacity,
|
||||
failAmount: smallAmount,
|
||||
successAmount: largeAmount,
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
}
|
||||
|
||||
estimator := BimodalEstimator{
|
||||
BimodalConfig: BimodalConfig{BimodalScaleMsat: scale},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
test := test
|
||||
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
p, err := estimator.probabilityFormula(
|
||||
test.capacity, test.successAmount,
|
||||
test.failAmount, test.amount,
|
||||
)
|
||||
require.InDelta(t, test.expectedProbability, p,
|
||||
test.tolerance)
|
||||
require.NoError(t, err)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestIntegral tests certain limits of the probability distribution integral.
|
||||
func TestIntegral(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
defaultScale := lnwire.NewMSatFromSatoshis(300_000)
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
capacity float64
|
||||
lower float64
|
||||
upper float64
|
||||
scale lnwire.MilliSatoshi
|
||||
expected float64
|
||||
}{
|
||||
{
|
||||
name: "all zero",
|
||||
expected: math.NaN(),
|
||||
scale: defaultScale,
|
||||
},
|
||||
{
|
||||
name: "all same",
|
||||
capacity: 1,
|
||||
lower: 1,
|
||||
upper: 1,
|
||||
scale: defaultScale,
|
||||
},
|
||||
{
|
||||
name: "large numbers, low lower",
|
||||
capacity: 21e17,
|
||||
lower: 0,
|
||||
upper: 21e17,
|
||||
expected: 1,
|
||||
scale: defaultScale,
|
||||
},
|
||||
{
|
||||
name: "large numbers, high lower",
|
||||
capacity: 21e17,
|
||||
lower: 21e17,
|
||||
upper: 21e17,
|
||||
scale: defaultScale,
|
||||
},
|
||||
{
|
||||
name: "same scale and capacity",
|
||||
capacity: 21e17,
|
||||
lower: 21e17,
|
||||
upper: 21e17,
|
||||
scale: 21e17,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
test := test
|
||||
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
estimator := BimodalEstimator{
|
||||
BimodalConfig: BimodalConfig{
|
||||
BimodalScaleMsat: test.scale,
|
||||
},
|
||||
}
|
||||
|
||||
p := estimator.integral(
|
||||
test.capacity, test.lower, test.upper,
|
||||
)
|
||||
require.InDelta(t, test.expected, p, 0.001)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestCanSend tests that the success amount drops to zero over time.
|
||||
func TestCanSend(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
successAmount := lnwire.MilliSatoshi(1_000_000)
|
||||
successTime := time.Unix(1_000, 0)
|
||||
now := time.Unix(2_000, 0)
|
||||
decayTime := time.Duration(1_000) * time.Second
|
||||
infinity := time.Unix(10_000_000_000, 0)
|
||||
|
||||
// Test an immediate retry.
|
||||
require.Equal(t, successAmount, canSend(
|
||||
successAmount, successTime, successTime, decayTime,
|
||||
))
|
||||
|
||||
// Test that after the decay time, the successAmount is 1/e of its
|
||||
// value.
|
||||
decayAmount := lnwire.MilliSatoshi(float64(successAmount) / math.E)
|
||||
require.Equal(t, decayAmount, canSend(
|
||||
successAmount, now, successTime, decayTime,
|
||||
))
|
||||
|
||||
// After a long time, we want the amount to approach 0.
|
||||
require.Equal(t, lnwire.MilliSatoshi(0), canSend(
|
||||
successAmount, infinity, successTime, decayTime,
|
||||
))
|
||||
}
|
||||
|
||||
// TestCannotSend tests that the fail amount approaches the capacity over time.
|
||||
func TestCannotSend(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
failAmount := lnwire.MilliSatoshi(1_000_000)
|
||||
failTime := time.Unix(1_000, 0)
|
||||
now := time.Unix(2_000, 0)
|
||||
decayTime := time.Duration(1_000) * time.Second
|
||||
infinity := time.Unix(10_000_000_000, 0)
|
||||
capacity := lnwire.MilliSatoshi(3_000_000)
|
||||
|
||||
// Test immediate retry.
|
||||
require.EqualValues(t, failAmount, cannotSend(
|
||||
failAmount, capacity, failTime, failTime, decayTime,
|
||||
))
|
||||
|
||||
// After the decay time we want to be between the fail amount and
|
||||
// the capacity.
|
||||
summand := lnwire.MilliSatoshi(float64(capacity-failAmount) / math.E)
|
||||
expected := capacity - summand
|
||||
require.Equal(t, expected, cannotSend(
|
||||
failAmount, capacity, now, failTime, decayTime,
|
||||
))
|
||||
|
||||
// After a long time, we want the amount to approach the capacity.
|
||||
require.Equal(t, capacity, cannotSend(
|
||||
failAmount, capacity, infinity, failTime, decayTime,
|
||||
))
|
||||
}
|
||||
|
||||
// TestComputeProbability tests the inclusion of previous forwarding results of
|
||||
// other channels of the node into the total probability.
|
||||
func TestComputeProbability(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
nodeWeight := 1 / 5.
|
||||
toNode := route.Vertex{10}
|
||||
tolerance := 0.01
|
||||
decayTime := time.Duration(1) * time.Hour * 24
|
||||
|
||||
// makeNodeResults prepares forwarding data for the other channels of
|
||||
// the node.
|
||||
makeNodeResults := func(successes []bool, now time.Time) NodeResults {
|
||||
results := make(NodeResults, len(successes))
|
||||
|
||||
for i, s := range successes {
|
||||
vertex := route.Vertex{byte(i)}
|
||||
|
||||
results[vertex] = TimedPairResult{
|
||||
FailTime: now, FailAmt: 1,
|
||||
}
|
||||
if s {
|
||||
results[vertex] = TimedPairResult{
|
||||
SuccessTime: now, SuccessAmt: 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return results
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
directProbability float64
|
||||
otherResults []bool
|
||||
expectedProbability float64
|
||||
delay time.Duration
|
||||
}{
|
||||
// If no other information is available, use the direct
|
||||
// probability.
|
||||
{
|
||||
name: "unknown, only direct",
|
||||
directProbability: 0.5,
|
||||
expectedProbability: 0.5,
|
||||
},
|
||||
// If there was a single success, expect increased success
|
||||
// probability.
|
||||
{
|
||||
name: "unknown, single success",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{true},
|
||||
expectedProbability: 0.583,
|
||||
},
|
||||
// If there were many successes, expect even higher success
|
||||
// probability.
|
||||
{
|
||||
name: "unknown, many successes",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{
|
||||
true, true, true, true, true,
|
||||
},
|
||||
expectedProbability: 0.75,
|
||||
},
|
||||
// If there was a single failure, we expect a slightly decreased
|
||||
// probability.
|
||||
{
|
||||
name: "unknown, single failure",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{false},
|
||||
expectedProbability: 0.416,
|
||||
},
|
||||
// If there were many failures, we expect a strongly decreased
|
||||
// probability.
|
||||
{
|
||||
name: "unknown, many failures",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{
|
||||
false, false, false, false, false,
|
||||
},
|
||||
expectedProbability: 0.25,
|
||||
},
|
||||
// A success and a failure neutralize themselves.
|
||||
{
|
||||
name: "unknown, mixed even",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{true, false},
|
||||
expectedProbability: 0.5,
|
||||
},
|
||||
// A mixed result history leads to increase/decrease of the most
|
||||
// experienced successes/failures.
|
||||
{
|
||||
name: "unknown, mixed uneven",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{
|
||||
true, true, false, false, false,
|
||||
},
|
||||
expectedProbability: 0.45,
|
||||
},
|
||||
// Many successes don't elevate the probability above 1.
|
||||
{
|
||||
name: "success, successes",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{
|
||||
true, true, true, true, true,
|
||||
},
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
// Five failures on a very certain channel will lower its
|
||||
// success probability to the unknown probability.
|
||||
{
|
||||
name: "success, failures",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{
|
||||
false, false, false, false, false,
|
||||
},
|
||||
expectedProbability: 0.5,
|
||||
},
|
||||
// If we are sure that the channel can send, a single failure
|
||||
// will not decrease the outcome significantly.
|
||||
{
|
||||
name: "success, single failure",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{false},
|
||||
expectedProbability: 0.8333,
|
||||
},
|
||||
{
|
||||
name: "success, many failures",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{
|
||||
false, false, false, false, false, false, false,
|
||||
},
|
||||
expectedProbability: 0.416,
|
||||
},
|
||||
// Failures won't decrease the probability below zero.
|
||||
{
|
||||
name: "fail, failures",
|
||||
directProbability: 0.0,
|
||||
otherResults: []bool{false, false, false},
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
{
|
||||
name: "fail, successes",
|
||||
directProbability: 0.0,
|
||||
otherResults: []bool{
|
||||
true, true, true, true, true,
|
||||
},
|
||||
expectedProbability: 0.5,
|
||||
},
|
||||
// We test forgetting information with the time decay.
|
||||
// A past success won't alter the certain success probability.
|
||||
{
|
||||
name: "success, single success, decay " +
|
||||
"time",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{true},
|
||||
delay: decayTime,
|
||||
expectedProbability: 1.00,
|
||||
},
|
||||
// A failure that was experienced some time ago won't influence
|
||||
// as much as a recent one.
|
||||
{
|
||||
name: "success, single fail, decay time",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{false},
|
||||
delay: decayTime,
|
||||
expectedProbability: 0.9314,
|
||||
},
|
||||
// Information from a long time ago doesn't have any effect.
|
||||
{
|
||||
name: "success, single fail, long ago",
|
||||
directProbability: 1.0,
|
||||
otherResults: []bool{false},
|
||||
delay: 10 * decayTime,
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
{
|
||||
name: "fail, successes decay time",
|
||||
directProbability: 0.0,
|
||||
otherResults: []bool{
|
||||
true, true, true, true, true,
|
||||
},
|
||||
delay: decayTime,
|
||||
expectedProbability: 0.269,
|
||||
},
|
||||
// Very recent info approaches the case with no time decay.
|
||||
{
|
||||
name: "unknown, successes close",
|
||||
directProbability: 0.5,
|
||||
otherResults: []bool{
|
||||
true, true, true, true, true,
|
||||
},
|
||||
delay: decayTime / 10,
|
||||
expectedProbability: 0.741,
|
||||
},
|
||||
}
|
||||
|
||||
estimator := BimodalEstimator{
|
||||
BimodalConfig: BimodalConfig{
|
||||
BimodalScaleMsat: scale, BimodalNodeWeight: nodeWeight,
|
||||
BimodalDecayTime: decayTime,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
test := test
|
||||
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
then := time.Unix(0, 0)
|
||||
results := makeNodeResults(test.otherResults, then)
|
||||
now := then.Add(test.delay)
|
||||
|
||||
p := estimator.calculateProbability(
|
||||
test.directProbability, now, results, toNode,
|
||||
)
|
||||
|
||||
require.InDelta(t, test.expectedProbability, p,
|
||||
tolerance)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TestLocalPairProbability tests that we reduce probability for failed direct
|
||||
// neighbors.
|
||||
func TestLocalPairProbability(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
decayTime := time.Hour
|
||||
now := time.Unix(1000000000, 0)
|
||||
toNode := route.Vertex{1}
|
||||
|
||||
createFailedResult := func(timeAgo time.Duration) NodeResults {
|
||||
return NodeResults{
|
||||
toNode: TimedPairResult{
|
||||
FailTime: now.Add(-timeAgo),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
expectedProbability float64
|
||||
results NodeResults
|
||||
}{
|
||||
{
|
||||
name: "no results",
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
{
|
||||
name: "recent failure",
|
||||
results: createFailedResult(0),
|
||||
expectedProbability: 0.0,
|
||||
},
|
||||
{
|
||||
name: "after decay time",
|
||||
results: createFailedResult(decayTime),
|
||||
expectedProbability: 1 - 1/math.E,
|
||||
},
|
||||
{
|
||||
name: "long ago",
|
||||
results: createFailedResult(10 * decayTime),
|
||||
expectedProbability: 1.0,
|
||||
},
|
||||
}
|
||||
|
||||
estimator := BimodalEstimator{
|
||||
BimodalConfig: BimodalConfig{BimodalDecayTime: decayTime},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
test := test
|
||||
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
p := estimator.LocalPairProbability(
|
||||
now, test.results, toNode,
|
||||
)
|
||||
require.InDelta(t, test.expectedProbability, p, 0.001)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// FuzzProbability checks that we don't encounter errors related to NaNs.
|
||||
func FuzzProbability(f *testing.F) {
|
||||
estimator := BimodalEstimator{
|
||||
BimodalConfig: BimodalConfig{BimodalScaleMsat: scale},
|
||||
}
|
||||
f.Add(uint64(0), uint64(0), uint64(0), uint64(0))
|
||||
|
||||
f.Fuzz(func(t *testing.T, capacity, successAmt, failAmt, amt uint64) {
|
||||
_, err := estimator.probabilityFormula(
|
||||
lnwire.MilliSatoshi(capacity),
|
||||
lnwire.MilliSatoshi(successAmt),
|
||||
lnwire.MilliSatoshi(failAmt), lnwire.MilliSatoshi(amt),
|
||||
)
|
||||
|
||||
require.NoError(t, err, "c: %v s: %v f: %v a: %v", capacity,
|
||||
successAmt, failAmt, amt)
|
||||
})
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user