Merge pull request #8337 from lightningnetwork/protofsm

[1/4] - protofsm: add new package for driving generic protocol FSMs
This commit is contained in:
Olaoluwa Osuntokun 2024-11-19 10:41:49 -08:00 committed by GitHub
commit c3fac0eb92
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 1292 additions and 0 deletions

122
protofsm/daemon_events.go Normal file
View File

@ -0,0 +1,122 @@
package protofsm
import (
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/lnwire"
)
// DaemonEvent is a special event that can be emitted by a state transition
// function. A state machine can use this to perform side effects, such as
// sending a message to a peer, or broadcasting a transaction.
type DaemonEvent interface {
daemonSealed()
}
// DaemonEventSet is a set of daemon events that can be emitted by a state
// transition.
type DaemonEventSet []DaemonEvent
// DaemonEvents is a special type constraint that enumerates all the possible
// types of daemon events.
type DaemonEvents interface {
SendMsgEvent[any] | BroadcastTxn | RegisterSpend[any] |
RegisterConf[any]
}
// SendPredicate is a function that returns true if the target message should
// sent.
type SendPredicate = func() bool
// SendMsgEvent is a special event that can be emitted by a state transition
// that instructs the daemon to send the contained message to the target peer.
type SendMsgEvent[Event any] struct {
// TargetPeer is the peer to send the message to.
TargetPeer btcec.PublicKey
// Msgs is the set of messages to send to the target peer.
Msgs []lnwire.Message
// SendWhen implements a system for a conditional send once a special
// send predicate has been met.
//
// TODO(roasbeef): contrast with usage of OnCommitFlush, etc
SendWhen fn.Option[SendPredicate]
// PostSendEvent is an optional event that is to be emitted after the
// message has been sent. If a SendWhen is specified, then this will
// only be executed after that returns true to unblock the send.
PostSendEvent fn.Option[Event]
}
// daemonSealed indicates that this struct is a DaemonEvent instance.
func (s *SendMsgEvent[E]) daemonSealed() {}
// BroadcastTxn indicates the target transaction should be broadcast to the
// network.
type BroadcastTxn struct {
// Tx is the transaction to broadcast.
Tx *wire.MsgTx
// Label is an optional label to attach to the transaction.
Label string
}
// daemonSealed indicates that this struct is a DaemonEvent instance.
func (b *BroadcastTxn) daemonSealed() {}
// SpendMapper is a function that's used to map a spend notification to a
// custom state machine event.
type SpendMapper[Event any] func(*chainntnfs.SpendDetail) Event
// RegisterSpend is used to request that a certain event is sent into the state
// machine once the specified outpoint has been spent.
type RegisterSpend[Event any] struct {
// OutPoint is the outpoint on chain to watch.
OutPoint wire.OutPoint
// PkScript is the script that we expect to be spent along with the
// outpoint.
PkScript []byte
// HeightHint is a value used to give the chain scanner a hint on how
// far back it needs to start its search.
HeightHint uint32
// PostSpendEvent is a special spend mapper, that if present, will be
// used to map the protofsm spend event to a custom event.
PostSpendEvent fn.Option[SpendMapper[Event]]
}
// daemonSealed indicates that this struct is a DaemonEvent instance.
func (r *RegisterSpend[E]) daemonSealed() {}
// RegisterConf is used to request that a certain event is sent into the state
// machien once the specified outpoint has been spent.
type RegisterConf[Event any] struct {
// Txid is the txid of the txn we want to watch the chain for.
Txid chainhash.Hash
// PkScript is the script that we expect to be created along with the
// outpoint.
PkScript []byte
// HeightHint is a value used to give the chain scanner a hint on how
// far back it needs to start its search.
HeightHint uint32
// NumConfs is the number of confirmations that the spending
// transaction needs to dispatch an event.
NumConfs fn.Option[uint32]
// PostConfEvent is an event that's sent back to the requester once the
// transaction specified above has confirmed in the chain with
// sufficient depth.
PostConfEvent fn.Option[Event]
}
// daemonSealed indicates that this struct is a DaemonEvent instance.
func (r *RegisterConf[E]) daemonSealed() {}

29
protofsm/log.go Normal file
View File

@ -0,0 +1,29 @@
package protofsm
import (
"github.com/btcsuite/btclog"
"github.com/lightningnetwork/lnd/build"
)
// log is a logger that is initialized with no output filters. This
// means the package will not perform any logging by default until the caller
// requests it.
var log btclog.Logger
// The default amount of logging is none.
func init() {
UseLogger(build.NewSubLogger("PFSM", nil))
}
// DisableLog disables all library log output. Logging output is disabled
// by default until UseLogger is called.
func DisableLog() {
UseLogger(btclog.Disabled)
}
// UseLogger uses a specified Logger to output package logging info.
// This should be used in preference to SetLogWriter if the caller is also
// using btclog.
func UseLogger(logger btclog.Logger) {
log = logger
}

15
protofsm/msg_mapper.go Normal file
View File

@ -0,0 +1,15 @@
package protofsm
import (
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/lnwire"
)
// MsgMapper is used to map incoming wire messages into a FSM event. This is
// useful to decouple the translation of an outside or wire message into an
// event type that can be understood by the FSM.
type MsgMapper[Event any] interface {
// MapMsg maps a wire message into a FSM event. If the message is not
// mappable, then an None is returned.
MapMsg(msg lnwire.Message) fn.Option[Event]
}

670
protofsm/state_machine.go Normal file
View File

@ -0,0 +1,670 @@
package protofsm
import (
"context"
"fmt"
"sync"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/lnutils"
"github.com/lightningnetwork/lnd/lnwire"
)
const (
// pollInterval is the interval at which we'll poll the SendWhen
// predicate if specified.
pollInterval = time.Millisecond * 100
)
// EmittedEvent is a special type that can be emitted by a state transition.
// This can container internal events which are to be routed back to the state,
// or external events which are to be sent to the daemon.
type EmittedEvent[Event any] struct {
// InternalEvent is an optional internal event that is to be routed
// back to the target state. This enables state to trigger one or many
// state transitions without a new external event.
InternalEvent fn.Option[[]Event]
// ExternalEvent is an optional external event that is to be sent to
// the daemon for dispatch. Usually, this is some form of I/O.
ExternalEvents fn.Option[DaemonEventSet]
}
// StateTransition is a state transition type. It denotes the next state to go
// to, and also the set of events to emit.
type StateTransition[Event any, Env Environment] struct {
// NextState is the next state to transition to.
NextState State[Event, Env]
// NewEvents is the set of events to emit.
NewEvents fn.Option[EmittedEvent[Event]]
}
// Environment is an abstract interface that represents the environment that
// the state machine will execute using. From the PoV of the main state machine
// executor, we just care about being able to clean up any resources that were
// allocated by the environment.
type Environment interface {
// Name returns the name of the environment. This is used to uniquely
// identify the environment of related state machines.
Name() string
}
// State defines an abstract state along, namely its state transition function
// that takes as input an event and an environment, and returns a state
// transition (next state, and set of events to emit). As state can also either
// be terminal, or not, a terminal event causes state execution to halt.
type State[Event any, Env Environment] interface {
// ProcessEvent takes an event and an environment, and returns a new
// state transition. This will be iteratively called until either a
// terminal state is reached, or no further internal events are
// emitted.
ProcessEvent(event Event, env Env) (*StateTransition[Event, Env], error)
// IsTerminal returns true if this state is terminal, and false
// otherwise.
IsTerminal() bool
// TODO(roasbeef): also add state serialization?
}
// DaemonAdapters is a set of methods that server as adapters to bridge the
// pure world of the FSM to the real world of the daemon. These will be used to
// do things like broadcast transactions, or send messages to peers.
type DaemonAdapters interface {
// SendMessages sends the target set of messages to the target peer.
SendMessages(btcec.PublicKey, []lnwire.Message) error
// BroadcastTransaction broadcasts a transaction with the target label.
BroadcastTransaction(*wire.MsgTx, string) error
// RegisterConfirmationsNtfn registers an intent to be notified once
// txid reaches numConfs confirmations. We also pass in the pkScript as
// the default light client instead needs to match on scripts created
// in the block. If a nil txid is passed in, then not only should we
// match on the script, but we should also dispatch once the
// transaction containing the script reaches numConfs confirmations.
// This can be useful in instances where we only know the script in
// advance, but not the transaction containing it.
//
// TODO(roasbeef): could abstract further?
RegisterConfirmationsNtfn(txid *chainhash.Hash, pkScript []byte,
numConfs, heightHint uint32,
opts ...chainntnfs.NotifierOption,
) (*chainntnfs.ConfirmationEvent, error)
// RegisterSpendNtfn registers an intent to be notified once the target
// outpoint is successfully spent within a transaction. The script that
// the outpoint creates must also be specified. This allows this
// interface to be implemented by BIP 158-like filtering.
RegisterSpendNtfn(outpoint *wire.OutPoint, pkScript []byte,
heightHint uint32) (*chainntnfs.SpendEvent, error)
}
// stateQuery is used by outside callers to query the internal state of the
// state machine.
type stateQuery[Event any, Env Environment] struct {
// CurrentState is a channel that will be sent the current state of the
// state machine.
CurrentState chan State[Event, Env]
}
// StateMachine represents an abstract FSM that is able to process new incoming
// events and drive a state machine to termination. This implementation uses
// type params to abstract over the types of events and environment. Events
// trigger new state transitions, that use the environment to perform some
// action.
//
// TODO(roasbeef): terminal check, daemon event execution, init?
type StateMachine[Event any, Env Environment] struct {
cfg StateMachineCfg[Event, Env]
// events is the channel that will be used to send new events to the
// FSM.
events chan Event
// newStateEvents is an EventDistributor that will be used to notify
// any relevant callers of new state transitions that occur.
newStateEvents *fn.EventDistributor[State[Event, Env]]
// stateQuery is a channel that will be used by outside callers to
// query the internal state machine state.
stateQuery chan stateQuery[Event, Env]
wg fn.GoroutineManager
quit chan struct{}
startOnce sync.Once
stopOnce sync.Once
}
// ErrorReporter is an interface that's used to report errors that occur during
// state machine execution.
type ErrorReporter interface {
// ReportError is a method that's used to report an error that occurred
// during state machine execution.
ReportError(err error)
}
// StateMachineCfg is a configuration struct that's used to create a new state
// machine.
type StateMachineCfg[Event any, Env Environment] struct {
// ErrorReporter is used to report errors that occur during state
// transitions.
ErrorReporter ErrorReporter
// Daemon is a set of adapters that will be used to bridge the FSM to
// the daemon.
Daemon DaemonAdapters
// InitialState is the initial state of the state machine.
InitialState State[Event, Env]
// Env is the environment that the state machine will use to execute.
Env Env
// InitEvent is an optional event that will be sent to the state
// machine as if it was emitted at the onset of the state machine. This
// can be used to set up tracking state such as a txid confirmation
// event.
InitEvent fn.Option[DaemonEvent]
// MsgMapper is an optional message mapper that can be used to map
// normal wire messages into FSM events.
MsgMapper fn.Option[MsgMapper[Event]]
// CustomPollInterval is an optional custom poll interval that can be
// used to set a quicker interval for tests.
CustomPollInterval fn.Option[time.Duration]
}
// NewStateMachine creates a new state machine given a set of daemon adapters,
// an initial state, an environment, and an event to process as if emitted at
// the onset of the state machine. Such an event can be used to set up tracking
// state such as a txid confirmation event.
func NewStateMachine[Event any, Env Environment](cfg StateMachineCfg[Event, Env], //nolint:lll
) StateMachine[Event, Env] {
return StateMachine[Event, Env]{
cfg: cfg,
events: make(chan Event, 1),
stateQuery: make(chan stateQuery[Event, Env]),
wg: *fn.NewGoroutineManager(context.Background()),
newStateEvents: fn.NewEventDistributor[State[Event, Env]](),
quit: make(chan struct{}),
}
}
// Start starts the state machine. This will spawn a goroutine that will drive
// the state machine to completion.
func (s *StateMachine[Event, Env]) Start() {
s.startOnce.Do(func() {
_ = s.wg.Go(func(ctx context.Context) {
s.driveMachine()
})
})
}
// Stop stops the state machine. This will block until the state machine has
// reached a stopping point.
func (s *StateMachine[Event, Env]) Stop() {
s.stopOnce.Do(func() {
close(s.quit)
s.wg.Stop()
})
}
// SendEvent sends a new event to the state machine.
//
// TODO(roasbeef): bool if processed?
func (s *StateMachine[Event, Env]) SendEvent(event Event) {
log.Debugf("FSM(%v): sending event: %v", s.cfg.Env.Name(),
lnutils.SpewLogClosure(event),
)
select {
case s.events <- event:
case <-s.quit:
return
}
}
// CanHandle returns true if the target message can be routed to the state
// machine.
func (s *StateMachine[Event, Env]) CanHandle(msg lnwire.Message) bool {
cfgMapper := s.cfg.MsgMapper
return fn.MapOptionZ(cfgMapper, func(mapper MsgMapper[Event]) bool {
return mapper.MapMsg(msg).IsSome()
})
}
// Name returns the name of the state machine's environment.
func (s *StateMachine[Event, Env]) Name() string {
return s.cfg.Env.Name()
}
// SendMessage attempts to send a wire message to the state machine. If the
// message can be mapped using the default message mapper, then true is
// returned indicating that the message was processed. Otherwise, false is
// returned.
func (s *StateMachine[Event, Env]) SendMessage(msg lnwire.Message) bool {
// If we have no message mapper, then return false as we can't process
// this message.
if !s.cfg.MsgMapper.IsSome() {
return false
}
log.Debugf("FSM(%v): sending msg: %v", s.cfg.Env.Name(),
lnutils.SpewLogClosure(msg),
)
// Otherwise, try to map the message using the default message mapper.
// If we can't extract an event, then we'll return false to indicate
// that the message wasn't processed.
var processed bool
s.cfg.MsgMapper.WhenSome(func(mapper MsgMapper[Event]) {
event := mapper.MapMsg(msg)
event.WhenSome(func(event Event) {
s.SendEvent(event)
processed = true
})
})
return processed
}
// CurrentState returns the current state of the state machine.
func (s *StateMachine[Event, Env]) CurrentState() (State[Event, Env], error) {
query := stateQuery[Event, Env]{
CurrentState: make(chan State[Event, Env], 1),
}
if !fn.SendOrQuit(s.stateQuery, query, s.quit) {
return nil, fmt.Errorf("state machine is shutting down")
}
return fn.RecvOrTimeout(query.CurrentState, time.Second)
}
// StateSubscriber represents an active subscription to be notified of new
// state transitions.
type StateSubscriber[E any, F Environment] *fn.EventReceiver[State[E, F]]
// RegisterStateEvents registers a new event listener that will be notified of
// new state transitions.
func (s *StateMachine[Event, Env]) RegisterStateEvents() StateSubscriber[
Event, Env] {
subscriber := fn.NewEventReceiver[State[Event, Env]](10)
// TODO(roasbeef): instead give the state and the input event?
s.newStateEvents.RegisterSubscriber(subscriber)
return subscriber
}
// RemoveStateSub removes the target state subscriber from the set of active
// subscribers.
func (s *StateMachine[Event, Env]) RemoveStateSub(sub StateSubscriber[
Event, Env]) {
_ = s.newStateEvents.RemoveSubscriber(sub)
}
// executeDaemonEvent executes a daemon event, which is a special type of event
// that can be emitted as part of the state transition function of the state
// machine. An error is returned if the type of event is unknown.
func (s *StateMachine[Event, Env]) executeDaemonEvent(
event DaemonEvent) error {
switch daemonEvent := event.(type) {
// This is a send message event, so we'll send the event, and also mind
// any preconditions as well as post-send events.
case *SendMsgEvent[Event]:
sendAndCleanUp := func() error {
log.Debugf("FSM(%v): sending message to target(%x): "+
"%v", s.cfg.Env.Name(),
daemonEvent.TargetPeer.SerializeCompressed(),
lnutils.SpewLogClosure(daemonEvent.Msgs),
)
err := s.cfg.Daemon.SendMessages(
daemonEvent.TargetPeer, daemonEvent.Msgs,
)
if err != nil {
return fmt.Errorf("unable to send msgs: %w",
err)
}
// If a post-send event was specified, then we'll funnel
// that back into the main state machine now as well.
return fn.MapOptionZ(daemonEvent.PostSendEvent, func(event Event) error { //nolint:lll
return s.wg.Go(func(ctx context.Context) {
log.Debugf("FSM(%v): sending "+
"post-send event: %v",
s.cfg.Env.Name(),
lnutils.SpewLogClosure(event),
)
s.SendEvent(event)
})
})
}
// If this doesn't have a SendWhen predicate, then we can just
// send it off right away.
if !daemonEvent.SendWhen.IsSome() {
return sendAndCleanUp()
}
// Otherwise, this has a SendWhen predicate, so we'll need
// launch a goroutine to poll the SendWhen, then send only once
// the predicate is true.
return s.wg.Go(func(ctx context.Context) {
predicateTicker := time.NewTicker(
s.cfg.CustomPollInterval.UnwrapOr(pollInterval),
)
defer predicateTicker.Stop()
log.Infof("FSM(%v): waiting for send predicate to "+
"be true", s.cfg.Env.Name())
for {
select {
case <-predicateTicker.C:
canSend := fn.MapOptionZ(
daemonEvent.SendWhen,
func(pred SendPredicate) bool {
return pred()
},
)
if canSend {
log.Infof("FSM(%v): send "+
"active predicate",
s.cfg.Env.Name())
err := sendAndCleanUp()
if err != nil {
//nolint:lll
log.Errorf("FSM(%v): unable to send message: %v", err)
}
return
}
case <-ctx.Done():
return
}
}
})
// If this is a broadcast transaction event, then we'll broadcast with
// the label attached.
case *BroadcastTxn:
log.Debugf("FSM(%v): broadcasting txn, txid=%v",
s.cfg.Env.Name(), daemonEvent.Tx.TxHash())
err := s.cfg.Daemon.BroadcastTransaction(
daemonEvent.Tx, daemonEvent.Label,
)
if err != nil {
return fmt.Errorf("unable to broadcast txn: %w", err)
}
return nil
// The state machine has requested a new event to be sent once a
// transaction spending a specified outpoint has confirmed.
case *RegisterSpend[Event]:
log.Debugf("FSM(%v): registering spend: %v", s.cfg.Env.Name(),
daemonEvent.OutPoint)
spendEvent, err := s.cfg.Daemon.RegisterSpendNtfn(
&daemonEvent.OutPoint, daemonEvent.PkScript,
daemonEvent.HeightHint,
)
if err != nil {
return fmt.Errorf("unable to register spend: %w", err)
}
return s.wg.Go(func(ctx context.Context) {
for {
select {
case spend, ok := <-spendEvent.Spend:
if !ok {
return
}
// If there's a post-send event, then
// we'll send that into the current
// state now.
postSpend := daemonEvent.PostSpendEvent
postSpend.WhenSome(func(f SpendMapper[Event]) { //nolint:lll
customEvent := f(spend)
s.SendEvent(customEvent)
})
return
case <-ctx.Done():
return
}
}
})
// The state machine has requested a new event to be sent once a
// specified txid+pkScript pair has confirmed.
case *RegisterConf[Event]:
log.Debugf("FSM(%v): registering conf: %v", s.cfg.Env.Name(),
daemonEvent.Txid)
numConfs := daemonEvent.NumConfs.UnwrapOr(1)
confEvent, err := s.cfg.Daemon.RegisterConfirmationsNtfn(
&daemonEvent.Txid, daemonEvent.PkScript,
numConfs, daemonEvent.HeightHint,
)
if err != nil {
return fmt.Errorf("unable to register conf: %w", err)
}
return s.wg.Go(func(ctx context.Context) {
for {
select {
case <-confEvent.Confirmed:
// If there's a post-conf event, then
// we'll send that into the current
// state now.
//
// TODO(roasbeef): refactor to
// dispatchAfterRecv w/ above
postConf := daemonEvent.PostConfEvent
postConf.WhenSome(func(e Event) {
s.SendEvent(e)
})
return
case <-ctx.Done():
return
}
}
})
}
return fmt.Errorf("unknown daemon event: %T", event)
}
// applyEvents applies a new event to the state machine. This will continue
// until no further events are emitted by the state machine. Along the way,
// we'll also ensure to execute any daemon events that are emitted.
func (s *StateMachine[Event, Env]) applyEvents(currentState State[Event, Env],
newEvent Event) (State[Event, Env], error) {
log.Debugf("FSM(%v): applying new event", s.cfg.Env.Name(),
lnutils.SpewLogClosure(newEvent),
)
eventQueue := fn.NewQueue(newEvent)
// Given the next event to handle, we'll process the event, then add
// any new emitted internal events to our event queue. This continues
// until we reach a terminal state, or we run out of internal events to
// process.
//
//nolint:lll
for nextEvent := eventQueue.Dequeue(); nextEvent.IsSome(); nextEvent = eventQueue.Dequeue() {
err := fn.MapOptionZ(nextEvent, func(event Event) error {
log.Debugf("FSM(%v): processing event: %v",
s.cfg.Env.Name(),
lnutils.SpewLogClosure(event),
)
// Apply the state transition function of the current
// state given this new event and our existing env.
transition, err := currentState.ProcessEvent(
event, s.cfg.Env,
)
if err != nil {
return err
}
newEvents := transition.NewEvents
err = fn.MapOptionZ(newEvents, func(events EmittedEvent[Event]) error { //nolint:lll
// With the event processed, we'll process any
// new daemon events that were emitted as part
// of this new state transition.
//
//nolint:lll
err := fn.MapOptionZ(events.ExternalEvents, func(dEvents DaemonEventSet) error {
log.Debugf("FSM(%v): processing "+
"daemon %v daemon events",
s.cfg.Env.Name(), len(dEvents))
for _, dEvent := range dEvents {
err := s.executeDaemonEvent(
dEvent,
)
if err != nil {
return err
}
}
return nil
})
if err != nil {
return err
}
// Next, we'll add any new emitted events to
// our event queue.
//
//nolint:lll
events.InternalEvent.WhenSome(func(es []Event) {
for _, inEvent := range es {
log.Debugf("FSM(%v): adding "+
"new internal event "+
"to queue: %v",
s.cfg.Env.Name(),
lnutils.SpewLogClosure(
inEvent,
),
)
eventQueue.Enqueue(inEvent)
}
})
return nil
})
if err != nil {
return err
}
log.Infof("FSM(%v): state transition: from_state=%T, "+
"to_state=%T",
s.cfg.Env.Name(), currentState,
transition.NextState)
// With our events processed, we'll now update our
// internal state.
currentState = transition.NextState
// Notify our subscribers of the new state transition.
//
// TODO(roasbeef): will only give us the outer state?
// * let FSMs choose which state to emit?
s.newStateEvents.NotifySubscribers(currentState)
return nil
})
if err != nil {
return currentState, err
}
}
return currentState, nil
}
// driveMachine is the main event loop of the state machine. It accepts any new
// incoming events, and then drives the state machine forward until it reaches
// a terminal state.
func (s *StateMachine[Event, Env]) driveMachine() {
log.Debugf("FSM(%v): starting state machine", s.cfg.Env.Name())
currentState := s.cfg.InitialState
// Before we start, if we have an init daemon event specified, then
// we'll handle that now.
err := fn.MapOptionZ(s.cfg.InitEvent, func(event DaemonEvent) error {
return s.executeDaemonEvent(event)
})
if err != nil {
log.Errorf("unable to execute init event: %w", err)
return
}
// We just started driving the state machine, so we'll notify our
// subscribers of this starting state.
s.newStateEvents.NotifySubscribers(currentState)
for {
select {
// We have a new external event, so we'll drive the state
// machine forward until we either run out of internal events,
// or we reach a terminal state.
case newEvent := <-s.events:
newState, err := s.applyEvents(currentState, newEvent)
if err != nil {
s.cfg.ErrorReporter.ReportError(err)
log.Errorf("unable to apply event: %v", err)
// An error occurred, so we'll tear down the
// entire state machine as we can't proceed.
go s.Stop()
return
}
currentState = newState
// An outside caller is querying our state, so we'll return the
// latest state.
case stateQuery := <-s.stateQuery:
if !fn.SendOrQuit(stateQuery.CurrentState, currentState, s.quit) { //nolint:lll
return
}
case <-s.wg.Done():
return
}
}
}

View File

@ -0,0 +1,456 @@
package protofsm
import (
"encoding/hex"
"fmt"
"sync/atomic"
"testing"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/mock"
"github.com/stretchr/testify/require"
)
type dummyEvents interface {
dummy()
}
type goToFin struct {
}
func (g *goToFin) dummy() {
}
type emitInternal struct {
}
func (e *emitInternal) dummy() {
}
type daemonEvents struct {
}
func (s *daemonEvents) dummy() {
}
type dummyEnv struct {
mock.Mock
}
func (d *dummyEnv) Name() string {
return "test"
}
type dummyStateStart struct {
canSend *atomic.Bool
}
var (
hexDecode = func(keyStr string) []byte {
keyBytes, _ := hex.DecodeString(keyStr)
return keyBytes
}
pub1, _ = btcec.ParsePubKey(hexDecode(
"02ec95e4e8ad994861b95fc5986eedaac24739e5ea3d0634db4c8ccd44cd" +
"a126ea",
))
pub2, _ = btcec.ParsePubKey(hexDecode(
"0356167ba3e54ac542e86e906d4186aba9ca0b9df45001c62b753d33fe06" +
"f5b4e8",
))
)
func (d *dummyStateStart) ProcessEvent(event dummyEvents, env *dummyEnv,
) (*StateTransition[dummyEvents, *dummyEnv], error) {
switch event.(type) {
case *goToFin:
return &StateTransition[dummyEvents, *dummyEnv]{
NextState: &dummyStateFin{},
}, nil
// This state will loop back upon itself, but will also emit an event
// to head to the terminal state.
case *emitInternal:
return &StateTransition[dummyEvents, *dummyEnv]{
NextState: &dummyStateStart{},
NewEvents: fn.Some(EmittedEvent[dummyEvents]{
InternalEvent: fn.Some(
[]dummyEvents{&goToFin{}},
),
}),
}, nil
// This state will proceed to the terminal state, but will emit all the
// possible daemon events.
case *daemonEvents:
// This send event can only succeed once the bool turns to
// true. After that, then we'll expect another event to take us
// to the final state.
sendEvent := &SendMsgEvent[dummyEvents]{
TargetPeer: *pub1,
SendWhen: fn.Some(func() bool {
return d.canSend.Load()
}),
PostSendEvent: fn.Some(dummyEvents(&goToFin{})),
}
// We'll also send out a normal send event that doesn't have
// any preconditions.
sendEvent2 := &SendMsgEvent[dummyEvents]{
TargetPeer: *pub2,
}
return &StateTransition[dummyEvents, *dummyEnv]{
// We'll state in this state until the send succeeds
// based on our predicate. Then it'll transition to the
// final state.
NextState: &dummyStateStart{
canSend: d.canSend,
},
NewEvents: fn.Some(EmittedEvent[dummyEvents]{
ExternalEvents: fn.Some(DaemonEventSet{
sendEvent, sendEvent2,
&BroadcastTxn{
Tx: &wire.MsgTx{},
Label: "test",
},
}),
}),
}, nil
}
return nil, fmt.Errorf("unknown event: %T", event)
}
func (d *dummyStateStart) IsTerminal() bool {
return false
}
type dummyStateFin struct {
}
func (d *dummyStateFin) ProcessEvent(event dummyEvents, env *dummyEnv,
) (*StateTransition[dummyEvents, *dummyEnv], error) {
return &StateTransition[dummyEvents, *dummyEnv]{
NextState: &dummyStateFin{},
}, nil
}
func (d *dummyStateFin) IsTerminal() bool {
return true
}
func assertState[Event any, Env Environment](t *testing.T,
m *StateMachine[Event, Env], expectedState State[Event, Env]) {
state, err := m.CurrentState()
require.NoError(t, err)
require.IsType(t, expectedState, state)
}
func assertStateTransitions[Event any, Env Environment](
t *testing.T, stateSub StateSubscriber[Event, Env],
expectedStates []State[Event, Env]) {
for _, expectedState := range expectedStates {
newState := <-stateSub.NewItemCreated.ChanOut()
require.IsType(t, expectedState, newState)
}
}
type dummyAdapters struct {
mock.Mock
confChan chan *chainntnfs.TxConfirmation
spendChan chan *chainntnfs.SpendDetail
}
func newDaemonAdapters() *dummyAdapters {
return &dummyAdapters{
confChan: make(chan *chainntnfs.TxConfirmation, 1),
spendChan: make(chan *chainntnfs.SpendDetail, 1),
}
}
func (d *dummyAdapters) SendMessages(pub btcec.PublicKey,
msgs []lnwire.Message) error {
args := d.Called(pub, msgs)
return args.Error(0)
}
func (d *dummyAdapters) BroadcastTransaction(tx *wire.MsgTx,
label string) error {
args := d.Called(tx, label)
return args.Error(0)
}
func (d *dummyAdapters) RegisterConfirmationsNtfn(txid *chainhash.Hash,
pkScript []byte, numConfs, heightHint uint32,
opts ...chainntnfs.NotifierOption,
) (*chainntnfs.ConfirmationEvent, error) {
args := d.Called(txid, pkScript, numConfs)
err := args.Error(0)
return &chainntnfs.ConfirmationEvent{
Confirmed: d.confChan,
}, err
}
func (d *dummyAdapters) RegisterSpendNtfn(outpoint *wire.OutPoint,
pkScript []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) {
args := d.Called(outpoint, pkScript, heightHint)
err := args.Error(0)
return &chainntnfs.SpendEvent{
Spend: d.spendChan,
}, err
}
// TestStateMachineOnInitDaemonEvent tests that the state machine will properly
// execute any init-level daemon events passed into it.
func TestStateMachineOnInitDaemonEvent(t *testing.T) {
// First, we'll create our state machine given the env, and our
// starting state.
env := &dummyEnv{}
startingState := &dummyStateStart{}
adapters := newDaemonAdapters()
// We'll make an init event that'll send to a peer, then transition us
// to our terminal state.
initEvent := &SendMsgEvent[dummyEvents]{
TargetPeer: *pub1,
PostSendEvent: fn.Some(dummyEvents(&goToFin{})),
}
cfg := StateMachineCfg[dummyEvents, *dummyEnv]{
Daemon: adapters,
InitialState: startingState,
Env: env,
InitEvent: fn.Some[DaemonEvent](initEvent),
}
stateMachine := NewStateMachine(cfg)
// Before we start up the state machine, we'll assert that the send
// message adapter is called on start up.
adapters.On("SendMessages", *pub1, mock.Anything).Return(nil)
stateMachine.Start()
defer stateMachine.Stop()
// As we're triggering internal events, we'll also subscribe to the set
// of new states so we can assert as we go.
stateSub := stateMachine.RegisterStateEvents()
defer stateMachine.RemoveStateSub(stateSub)
// Assert that we go from the starting state to the final state. The
// state machine should now also be on the final terminal state.
expectedStates := []State[dummyEvents, *dummyEnv]{
&dummyStateStart{}, &dummyStateFin{},
}
assertStateTransitions(t, stateSub, expectedStates)
// We'll now assert that after the daemon was started, the send message
// adapter was called above as specified in the init event.
adapters.AssertExpectations(t)
env.AssertExpectations(t)
}
// TestStateMachineInternalEvents tests that the state machine is able to add
// new internal events to the event queue for further processing during a state
// transition.
func TestStateMachineInternalEvents(t *testing.T) {
t.Parallel()
// First, we'll create our state machine given the env, and our
// starting state.
env := &dummyEnv{}
startingState := &dummyStateStart{}
adapters := newDaemonAdapters()
cfg := StateMachineCfg[dummyEvents, *dummyEnv]{
Daemon: adapters,
InitialState: startingState,
Env: env,
InitEvent: fn.None[DaemonEvent](),
}
stateMachine := NewStateMachine(cfg)
stateMachine.Start()
defer stateMachine.Stop()
// As we're triggering internal events, we'll also subscribe to the set
// of new states so we can assert as we go.
stateSub := stateMachine.RegisterStateEvents()
defer stateMachine.RemoveStateSub(stateSub)
// For this transition, we'll send in the emitInternal event, which'll
// send us back to the starting event, but emit an internal event.
stateMachine.SendEvent(&emitInternal{})
// We'll now also assert the path we took to get here to ensure the
// internal events were processed.
expectedStates := []State[dummyEvents, *dummyEnv]{
&dummyStateStart{}, &dummyStateStart{}, &dummyStateFin{},
}
assertStateTransitions(
t, stateSub, expectedStates,
)
// We should ultimately end up in the terminal state.
assertState[dummyEvents, *dummyEnv](t, &stateMachine, &dummyStateFin{})
// Make sure all the env expectations were met.
env.AssertExpectations(t)
}
// TestStateMachineDaemonEvents tests that the state machine is able to process
// daemon emitted as part of the state transition process.
func TestStateMachineDaemonEvents(t *testing.T) {
t.Parallel()
// First, we'll create our state machine given the env, and our
// starting state.
env := &dummyEnv{}
var boolTrigger atomic.Bool
startingState := &dummyStateStart{
canSend: &boolTrigger,
}
adapters := newDaemonAdapters()
cfg := StateMachineCfg[dummyEvents, *dummyEnv]{
Daemon: adapters,
InitialState: startingState,
Env: env,
InitEvent: fn.None[DaemonEvent](),
}
stateMachine := NewStateMachine(cfg)
stateMachine.Start()
defer stateMachine.Stop()
// As we're triggering internal events, we'll also subscribe to the set
// of new states so we can assert as we go.
stateSub := stateMachine.RegisterStateEvents()
defer stateMachine.RemoveStateSub(stateSub)
// As soon as we send in the daemon event, we expect the
// disable+broadcast events to be processed, as they are unconditional.
adapters.On(
"BroadcastTransaction", mock.Anything, mock.Anything,
).Return(nil)
adapters.On("SendMessages", *pub2, mock.Anything).Return(nil)
// We'll start off by sending in the daemon event, which'll trigger the
// state machine to execute the series of daemon events.
stateMachine.SendEvent(&daemonEvents{})
// We should transition back to the starting state now, after we
// started from the very same state.
expectedStates := []State[dummyEvents, *dummyEnv]{
&dummyStateStart{}, &dummyStateStart{},
}
assertStateTransitions(t, stateSub, expectedStates)
// At this point, we expect that the two methods above were called.
adapters.AssertExpectations(t)
// However, we don't expect the SendMessages for the first peer target
// to be called yet, as the condition hasn't yet been met.
adapters.AssertNotCalled(t, "SendMessages", *pub1)
// We'll now flip the bool to true, which should cause the SendMessages
// method to be called, and for us to transition to the final state.
boolTrigger.Store(true)
adapters.On("SendMessages", *pub1, mock.Anything).Return(nil)
expectedStates = []State[dummyEvents, *dummyEnv]{&dummyStateFin{}}
assertStateTransitions(t, stateSub, expectedStates)
adapters.AssertExpectations(t)
env.AssertExpectations(t)
}
type dummyMsgMapper struct {
mock.Mock
}
func (d *dummyMsgMapper) MapMsg(wireMsg lnwire.Message) fn.Option[dummyEvents] {
args := d.Called(wireMsg)
//nolint:forcetypeassert
return args.Get(0).(fn.Option[dummyEvents])
}
// TestStateMachineMsgMapper tests that given a message mapper, we can properly
// send in wire messages get mapped to FSM events.
func TestStateMachineMsgMapper(t *testing.T) {
// First, we'll create our state machine given the env, and our
// starting state.
env := &dummyEnv{}
startingState := &dummyStateStart{}
adapters := newDaemonAdapters()
// We'll also provide a message mapper that only knows how to map a
// single wire message (error).
dummyMapper := &dummyMsgMapper{}
// The only thing we know how to map is the error message, which'll
// terminate the state machine.
wireError := &lnwire.Error{}
initMsg := &lnwire.Init{}
dummyMapper.On("MapMsg", wireError).Return(
fn.Some(dummyEvents(&goToFin{})),
)
dummyMapper.On("MapMsg", initMsg).Return(fn.None[dummyEvents]())
cfg := StateMachineCfg[dummyEvents, *dummyEnv]{
Daemon: adapters,
InitialState: startingState,
Env: env,
MsgMapper: fn.Some[MsgMapper[dummyEvents]](dummyMapper),
}
stateMachine := NewStateMachine(cfg)
stateMachine.Start()
defer stateMachine.Stop()
// As we're triggering internal events, we'll also subscribe to the set
// of new states so we can assert as we go.
stateSub := stateMachine.RegisterStateEvents()
defer stateMachine.RemoveStateSub(stateSub)
// First, we'll verify that the CanHandle method works as expected.
require.True(t, stateMachine.CanHandle(wireError))
require.False(t, stateMachine.CanHandle(&lnwire.Init{}))
// Next, we'll attempt to send the wire message into the state machine.
// We should transition to the final state.
require.True(t, stateMachine.SendMessage(wireError))
// We should transition to the final state.
expectedStates := []State[dummyEvents, *dummyEnv]{
&dummyStateStart{}, &dummyStateFin{},
}
assertStateTransitions(t, stateSub, expectedStates)
dummyMapper.AssertExpectations(t)
adapters.AssertExpectations(t)
env.AssertExpectations(t)
}