multi: add blinded route to route requests expressed as hints

Add the option to include a blinded route in a route request (exclusive
to including hop hints, because it's incongruous to include both), and
express the route as a chain of hop hints.

Using a chain of hints over a single hint to represent the whole path
allows us to re-use our route construction to fill in a lot of the
path on our behalf.
This commit is contained in:
Carla Kirk-Cohen
2022-12-15 16:48:56 -05:00
committed by Olaoluwa Osuntokun
parent 48e36d93d4
commit c9609b8214
7 changed files with 501 additions and 18 deletions

View File

@@ -5,7 +5,9 @@ import (
"fmt"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
)
var (
@@ -77,3 +79,94 @@ func (b *BlindedPayment) Validate() error {
return nil
}
// toRouteHints produces a set of chained route hints that represent a blinded
// path. In the case of a single hop blinded route (which is paying directly
// to the introduction point), no hints will be returned. In this case callers
// *must* account for the blinded route's CLTV delta elsewhere (as this is
// effectively the final_cltv_delta for the receiving introduction node). In
// the case of multiple blinded hops, CLTV delta is fully accounted for in the
// hints (both for intermediate hops and the final_cltv_delta for the receiving
// node).
func (b *BlindedPayment) toRouteHints() RouteHints {
// If we just have a single hop in our blinded route, it just contains
// an introduction node (this is a valid path according to the spec).
// Since we have the un-blinded node ID for the introduction node, we
// don't need to add any route hints.
if len(b.BlindedPath.BlindedHops) == 1 {
return nil
}
hintCount := len(b.BlindedPath.BlindedHops) - 1
hints := make(
map[route.Vertex][]*channeldb.CachedEdgePolicy, hintCount,
)
// Start at the unblinded introduction node, because our pathfinding
// will be able to locate this point in the graph.
fromNode := route.NewVertex(b.BlindedPath.IntroductionPoint)
features := lnwire.EmptyFeatureVector()
if b.Features != nil {
features = b.Features.Clone()
}
// Use the total aggregate relay parameters for the entire blinded
// route as the policy for the hint from our introduction node. This
// will ensure that pathfinding provides sufficient fees/delay for the
// blinded portion to the introduction node.
firstBlindedHop := b.BlindedPath.BlindedHops[1].BlindedNodePub
hints[fromNode] = []*channeldb.CachedEdgePolicy{
{
TimeLockDelta: b.CltvExpiryDelta,
MinHTLC: lnwire.MilliSatoshi(b.HtlcMinimum),
MaxHTLC: lnwire.MilliSatoshi(b.HtlcMaximum),
FeeBaseMSat: lnwire.MilliSatoshi(b.BaseFee),
FeeProportionalMillionths: lnwire.MilliSatoshi(
b.ProportionalFee,
),
ToNodePubKey: func() route.Vertex {
return route.NewVertex(
// The first node in this slice is
// the introduction node, so we start
// at index 1 to get the first blinded
// relaying node.
firstBlindedHop,
)
},
ToNodeFeatures: features,
},
}
// Start at an offset of 1 because the first node in our blinded hops
// is the introduction node and terminate at the second-last node
// because we're dealing with hops as pairs.
for i := 1; i < hintCount; i++ {
// Set our origin node to the current
fromNode = route.NewVertex(
b.BlindedPath.BlindedHops[i].BlindedNodePub,
)
// Create a hint which has no fee or cltv delta. We
// specifically want zero values here because our relay
// parameters are expressed in encrypted blobs rather than the
// route itself for blinded routes.
nextHopIdx := i + 1
nextNode := route.NewVertex(
b.BlindedPath.BlindedHops[nextHopIdx].BlindedNodePub,
)
hint := &channeldb.CachedEdgePolicy{
ToNodePubKey: func() route.Vertex {
return nextNode
},
ToNodeFeatures: features,
}
hints[fromNode] = []*channeldb.CachedEdgePolicy{
hint,
}
}
return hints
}