contractcourt: persist timed out incoming htlc resolver reports

Incoming htlcs that are timed out or failed (invalid htlc or invoice
condition not met), save a single on chain resolution because we don't
need to take any actions on them ourselves (we don't need to worry
about 2 stage claims since this is the success path for our peer).
This commit is contained in:
carla
2020-07-07 19:49:54 +02:00
parent f5b20b7429
commit cf739f3f87
3 changed files with 221 additions and 97 deletions

View File

@@ -81,7 +81,14 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
// present itself when we crash before processRemoteAdds in the
// link has ran.
h.resolved = true
return nil, nil
// We write a report to disk that indicates we could not decode
// the htlc.
resReport := h.report().resolverReport(
nil, channeldb.ResolverTypeIncomingHtlc,
channeldb.ResolverOutcomeAbandoned,
)
return nil, h.PutResolverReport(nil, resReport)
}
// Register for block epochs. After registration, the current height
@@ -120,7 +127,14 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
"abandoning", h, h.htlcResolution.ClaimOutpoint,
h.htlcExpiry, currentHeight)
h.resolved = true
return nil, h.Checkpoint(h)
// Finally, get our report and checkpoint our resolver with a
// timeout outcome report.
report := h.report().resolverReport(
nil, channeldb.ResolverTypeIncomingHtlc,
channeldb.ResolverOutcomeTimeout,
)
return nil, h.Checkpoint(h, report)
}
// applyPreimage is a helper function that will populate our internal
@@ -158,16 +172,6 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
return nil
}
// If the HTLC hasn't expired yet, then we may still be able to claim
// it if we learn of the pre-image, so we'll subscribe to the preimage
// database to see if it turns up, or the HTLC times out.
//
// NOTE: This is done BEFORE opportunistically querying the db, to
// ensure the preimage can't be delivered between querying and
// registering for the preimage subscription.
preimageSubscription := h.PreimageDB.SubscribeUpdates()
defer preimageSubscription.CancelSubscription()
// Define a closure to process htlc resolutions either directly or
// triggered by future notifications.
processHtlcResolution := func(e invoices.HtlcResolution) (
@@ -196,7 +200,14 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
h.htlcExpiry, currentHeight)
h.resolved = true
return nil, h.Checkpoint(h)
// Checkpoint our resolver with an abandoned outcome
// because we take no further action on this htlc.
report := h.report().resolverReport(
nil, channeldb.ResolverTypeIncomingHtlc,
channeldb.ResolverOutcomeAbandoned,
)
return nil, h.Checkpoint(h, report)
// Error if the resolution type is unknown, we are only
// expecting settles and fails.
@@ -206,71 +217,91 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
}
}
// Create a buffered hodl chan to prevent deadlock.
hodlChan := make(chan interface{}, 1)
// Notify registry that we are potentially resolving as an exit hop
// on-chain. If this HTLC indeed pays to an existing invoice, the
// invoice registry will tell us what to do with the HTLC. This is
// identical to HTLC resolution in the link.
circuitKey := channeldb.CircuitKey{
ChanID: h.ShortChanID,
HtlcID: h.htlc.HtlcIndex,
}
resolution, err := h.Registry.NotifyExitHopHtlc(
h.htlc.RHash, h.htlc.Amt, h.htlcExpiry, currentHeight,
circuitKey, hodlChan, payload,
var (
hodlChan chan interface{}
witnessUpdates <-chan lntypes.Preimage
)
if err != nil {
return nil, err
}
if payload.FwdInfo.NextHop == hop.Exit {
// Create a buffered hodl chan to prevent deadlock.
hodlChan = make(chan interface{}, 1)
defer h.Registry.HodlUnsubscribeAll(hodlChan)
// Take action based on the resolution we received. If the htlc was
// settled, or a htlc for a known invoice failed we can resolve it
// directly. If the resolution is nil, the htlc was neither accepted
// nor failed, so we cannot take action yet.
switch res := resolution.(type) {
case *invoices.HtlcFailResolution:
// In the case where the htlc failed, but the invoice was known
// to the registry, we can directly resolve the htlc.
if res.Outcome != invoices.ResultInvoiceNotFound {
return processHtlcResolution(resolution)
// Notify registry that we are potentially resolving as an exit
// hop on-chain. If this HTLC indeed pays to an existing
// invoice, the invoice registry will tell us what to do with
// the HTLC. This is identical to HTLC resolution in the link.
circuitKey := channeldb.CircuitKey{
ChanID: h.ShortChanID,
HtlcID: h.htlc.HtlcIndex,
}
// If we settled the htlc, we can resolve it.
case *invoices.HtlcSettleResolution:
return processHtlcResolution(resolution)
// If the resolution is nil, the htlc was neither settled nor failed so
// we cannot take action at present.
case nil:
default:
return nil, fmt.Errorf("unknown htlc resolution type: %T",
resolution)
}
// With the epochs and preimage subscriptions initialized, we'll query
// to see if we already know the preimage.
preimage, ok := h.PreimageDB.LookupPreimage(h.htlc.RHash)
if ok {
// If we do, then this means we can claim the HTLC! However,
// we don't know how to ourselves, so we'll return our inner
// resolver which has the knowledge to do so.
if err := applyPreimage(preimage); err != nil {
resolution, err := h.Registry.NotifyExitHopHtlc(
h.htlc.RHash, h.htlc.Amt, h.htlcExpiry, currentHeight,
circuitKey, hodlChan, payload,
)
if err != nil {
return nil, err
}
return &h.htlcSuccessResolver, nil
defer h.Registry.HodlUnsubscribeAll(hodlChan)
// Take action based on the resolution we received. If the htlc
// was settled, or a htlc for a known invoice failed we can
// resolve it directly. If the resolution is nil, the htlc was
// neither accepted nor failed, so we cannot take action yet.
switch res := resolution.(type) {
case *invoices.HtlcFailResolution:
// In the case where the htlc failed, but the invoice
// was known to the registry, we can directly resolve
// the htlc.
if res.Outcome != invoices.ResultInvoiceNotFound {
return processHtlcResolution(resolution)
}
// If we settled the htlc, we can resolve it.
case *invoices.HtlcSettleResolution:
return processHtlcResolution(resolution)
// If the resolution is nil, the htlc was neither settled nor
// failed so we cannot take action at present.
case nil:
default:
return nil, fmt.Errorf("unknown htlc resolution type: %T",
resolution)
}
} else {
// If the HTLC hasn't expired yet, then we may still be able to
// claim it if we learn of the pre-image, so we'll subscribe to
// the preimage database to see if it turns up, or the HTLC
// times out.
//
// NOTE: This is done BEFORE opportunistically querying the db,
// to ensure the preimage can't be delivered between querying
// and registering for the preimage subscription.
preimageSubscription := h.PreimageDB.SubscribeUpdates()
defer preimageSubscription.CancelSubscription()
// With the epochs and preimage subscriptions initialized, we'll
// query to see if we already know the preimage.
preimage, ok := h.PreimageDB.LookupPreimage(h.htlc.RHash)
if ok {
// If we do, then this means we can claim the HTLC!
// However, we don't know how to ourselves, so we'll
// return our inner resolver which has the knowledge to
// do so.
if err := applyPreimage(preimage); err != nil {
return nil, err
}
return &h.htlcSuccessResolver, nil
}
witnessUpdates = preimageSubscription.WitnessUpdates
}
for {
select {
case preimage := <-preimageSubscription.WitnessUpdates:
case preimage := <-witnessUpdates:
// We received a new preimage, but we need to ignore
// all except the preimage we are waiting for.
if !preimage.Matches(h.htlc.RHash) {
@@ -305,7 +336,13 @@ func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
h.htlcResolution.ClaimOutpoint,
h.htlcExpiry, currentHeight)
h.resolved = true
return nil, h.Checkpoint(h)
report := h.report().resolverReport(
nil,
channeldb.ResolverTypeIncomingHtlc,
channeldb.ResolverOutcomeTimeout,
)
return nil, h.Checkpoint(h, report)
}
case <-h.quit: