itest: flatten testMultiHopHtlcAggregation

This commit is contained in:
yyforyongyu 2024-10-23 22:51:48 +08:00
parent 52e6fb1161
commit f95e64f084
No known key found for this signature in database
GPG Key ID: 9BCD95C4FF296868
3 changed files with 423 additions and 461 deletions

View File

@ -297,10 +297,6 @@ var allTestCases = []*lntest.TestCase{
Name: "REST API",
TestFunc: testRestAPI,
},
{
Name: "multi hop htlc aggregation",
TestFunc: testMultiHopHtlcAggregation,
},
{
Name: "revoked uncooperative close retribution",
TestFunc: testRevokedCloseRetribution,

View File

@ -10,6 +10,7 @@ import (
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/rpc"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/stretchr/testify/require"
)
@ -101,6 +102,18 @@ var multiHopForceCloseTestCases = []*lntest.TestCase{
Name: "multihop local preimage claim leased",
TestFunc: testLocalPreimageClaimLeased,
},
{
Name: "multihop htlc aggregation anchor",
TestFunc: testHtlcAggregaitonAnchor,
},
{
Name: "multihop htlc aggregation simple taproot",
TestFunc: testHtlcAggregaitonSimpleTaproot,
},
{
Name: "multihop htlc aggregation leased",
TestFunc: testHtlcAggregaitonLeased,
},
}
// testLocalClaimOutgoingHTLCAnchor tests `runLocalClaimOutgoingHTLC` with
@ -2718,3 +2731,413 @@ func runLocalPreimageClaimLeased(ht *lntest.HarnessTest,
ht.AssertNumPendingForceClose(alice, 0)
ht.AssertNumPendingForceClose(bob, 0)
}
// testHtlcAggregaitonAnchor tests `runHtlcAggregation` with anchor channel.
func testHtlcAggregaitonAnchor(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// anchor channels.
//
// Prepare params.
params := lntest.OpenChannelParams{Amt: chanAmt}
cfg := node.CfgAnchor
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
params := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
}
// Prepare Carol's node config to enable zero-conf and anchor.
cfg := node.CfgZeroConf
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
}
// testHtlcAggregaitonSimpleTaproot tests `runHtlcAggregation` with simple
// taproot channel.
func testHtlcAggregaitonSimpleTaproot(ht *lntest.HarnessTest) {
c := lnrpc.CommitmentType_SIMPLE_TAPROOT
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// simple taproot channels.
//
// Prepare params.
params := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: c,
Private: true,
}
cfg := node.CfgSimpleTaproot
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf simple taproot channels.
//
// Prepare params.
params := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: c,
Private: true,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgSimpleTaproot
cfg = append(cfg, node.CfgZeroConf...)
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
}
// testHtlcAggregaitonLeased tests `runHtlcAggregation` with script enforced
// lease channel.
func testHtlcAggregaitonLeased(ht *lntest.HarnessTest) {
success := ht.Run("no zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// leased channels.
//
// Prepare params.
params := lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: leasedType,
}
cfg := node.CfgLeased
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
if !success {
return
}
ht.Run("zero conf", func(t *testing.T) {
st := ht.Subtest(t)
// Create a three hop network: Alice -> Bob -> Carol, using
// zero-conf anchor channels.
//
// Prepare params.
params := lntest.OpenChannelParams{
Amt: chanAmt,
ZeroConf: true,
CommitmentType: leasedType,
}
// Prepare Carol's node config to enable zero-conf and leased
// channel.
cfg := node.CfgLeased
cfg = append(cfg, node.CfgZeroConf...)
cfgs := [][]string{cfg, cfg, cfg}
runHtlcAggregation(st, cfgs, params)
})
}
// runHtlcAggregation tests that in a multi-hop HTLC scenario, if we force
// close a channel with both incoming and outgoing HTLCs, we can properly
// resolve them using the second level timeout and success transactions. In
// case of anchor channels, the second-level spends can also be aggregated and
// properly feebumped, so we'll check that as well.
func runHtlcAggregation(ht *lntest.HarnessTest,
cfgs [][]string, params lntest.OpenChannelParams) {
// Set the min relay feerate to be 10 sat/vbyte so the non-CPFP anchor
// is never swept.
//
// TODO(yy): delete this line once the normal anchor sweeping is
// removed.
ht.SetMinRelayFeerate(10_000)
// Create a three hop network: Alice -> Bob -> Carol.
chanPoints, nodes := ht.CreateSimpleNetwork(cfgs, params)
alice, bob, carol := nodes[0], nodes[1], nodes[2]
_, bobChanPoint := chanPoints[0], chanPoints[1]
// We need one additional UTXO to create the sweeping tx for the
// second-level success txes.
ht.FundCoins(btcutil.SatoshiPerBitcoin, bob)
// Bob should have enough wallet UTXOs here to sweep the HTLC in the
// end of this test. However, due to a known issue, Bob's wallet may
// report there's no UTXO available. For details,
// - https://github.com/lightningnetwork/lnd/issues/8786
//
// TODO(yy): remove this step once the issue is resolved.
ht.FundCoins(btcutil.SatoshiPerBitcoin, bob)
// If this is a taproot channel, then we'll need to make some manual
// route hints so Alice+Carol can actually find a route.
var (
carolRouteHints []*lnrpc.RouteHint
aliceRouteHints []*lnrpc.RouteHint
)
if params.CommitmentType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
carolRouteHints = makeRouteHints(bob, carol, params.ZeroConf)
aliceRouteHints = makeRouteHints(bob, alice, params.ZeroConf)
}
// To ensure we have capacity in both directions of the route, we'll
// make a fairly large payment Alice->Carol and settle it.
const reBalanceAmt = 500_000
invoice := &lnrpc.Invoice{
Value: reBalanceAmt,
RouteHints: carolRouteHints,
}
invResp := carol.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(alice, []string{invResp.PaymentRequest})
// Make sure Carol has settled the invoice.
ht.AssertInvoiceSettled(carol, invResp.PaymentAddr)
// With the network active, we'll now add a new hodl invoices at both
// Alice's and Carol's end. Make sure the cltv expiry delta is large
// enough, otherwise Bob won't send out the outgoing htlc.
const numInvoices = 5
const invoiceAmt = 50_000
var (
carolInvoices []*invoicesrpc.AddHoldInvoiceResp
aliceInvoices []*invoicesrpc.AddHoldInvoiceResp
alicePreimages []lntypes.Preimage
payHashes [][]byte
invoiceStreamsCarol []rpc.SingleInvoiceClient
invoiceStreamsAlice []rpc.SingleInvoiceClient
)
// Add Carol invoices.
for i := 0; i < numInvoices; i++ {
preimage := ht.RandomPreimage()
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: finalCltvDelta,
Hash: payHash[:],
RouteHints: carolRouteHints,
}
carolInvoice := carol.RPC.AddHoldInvoice(invoiceReq)
carolInvoices = append(carolInvoices, carolInvoice)
payHashes = append(payHashes, payHash[:])
// Subscribe the invoice.
stream := carol.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsCarol = append(invoiceStreamsCarol, stream)
}
// We'll give Alice's invoices a longer CLTV expiry, to ensure the
// channel Bob<->Carol will be closed first.
for i := 0; i < numInvoices; i++ {
preimage := ht.RandomPreimage()
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: thawHeightDelta - 4,
Hash: payHash[:],
RouteHints: aliceRouteHints,
}
aliceInvoice := alice.RPC.AddHoldInvoice(invoiceReq)
aliceInvoices = append(aliceInvoices, aliceInvoice)
alicePreimages = append(alicePreimages, preimage)
payHashes = append(payHashes, payHash[:])
// Subscribe the invoice.
stream := alice.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsAlice = append(invoiceStreamsAlice, stream)
}
// Now that we've created the invoices, we'll pay them all from
// Alice<->Carol, going through Bob. We won't wait for the response
// however, as neither will immediately settle the payment.
//
// Alice will pay all of Carol's invoices.
for _, carolInvoice := range carolInvoices {
req := &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
alice.RPC.SendPayment(req)
}
// And Carol will pay Alice's.
for _, aliceInvoice := range aliceInvoices {
req := &routerrpc.SendPaymentRequest{
PaymentRequest: aliceInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
carol.RPC.SendPayment(req)
}
// At this point, all 3 nodes should now the HTLCs active on their
// channels.
ht.AssertActiveHtlcs(alice, payHashes...)
ht.AssertActiveHtlcs(bob, payHashes...)
ht.AssertActiveHtlcs(carol, payHashes...)
// Wait for Alice and Carol to mark the invoices as accepted. There is
// a small gap to bridge between adding the htlc to the channel and
// executing the exit hop logic.
for _, stream := range invoiceStreamsCarol {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
for _, stream := range invoiceStreamsAlice {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
// We want Carol's htlcs to expire off-chain to demonstrate bob's force
// close. However, Carol will cancel her invoices to prevent force
// closes, so we shut her down for now.
restartCarol := ht.SuspendNode(carol)
// We'll now mine enough blocks to trigger Bob's broadcast of his
// commitment transaction due to the fact that the Carol's HTLCs are
// about to timeout. With the default outgoing broadcast delta of zero,
// this will be the same height as the htlc expiry height.
numBlocks := padCLTV(
uint32(finalCltvDelta - lncfg.DefaultOutgoingBroadcastDelta),
)
ht.MineBlocks(int(numBlocks))
// Bob should have one anchor sweep request.
//
// For neutrino backend, there's no way to know the sweeping of the
// remote anchor is failed, so Bob still sees two pending sweeps.
if ht.IsNeutrinoBackend() {
ht.AssertNumPendingSweeps(bob, 2)
} else {
ht.AssertNumPendingSweeps(bob, 1)
}
// Bob's force close tx and anchor sweeping tx should now be found in
// the mempool.
ht.AssertNumTxsInMempool(2)
// Mine a block to confirm Bob's force close tx and anchor sweeping tx.
ht.MineBlocksAndAssertNumTxes(1, 2)
// Bob should have `numInvoices` for HTLC timeout txns.
ht.AssertNumPendingSweeps(bob, numInvoices)
// Once bob has force closed, we can restart carol.
require.NoError(ht, restartCarol())
// Carol should have commit and anchor outputs.
ht.AssertNumPendingSweeps(carol, 2)
// Let Alice settle her invoices. When Bob now gets the preimages, he
// will broadcast his second-level txns to claim the htlcs.
for _, preimage := range alicePreimages {
alice.RPC.SettleInvoice(preimage[:])
}
// Bob should have `numInvoices` for both HTLC success and timeout
// txns.
ht.AssertNumPendingSweeps(bob, numInvoices*2)
// Mine a block to trigger the sweep. This is needed because the
// preimage extraction logic from the link is not managed by the
// blockbeat, which means the preimage may be sent to the contest
// resolver after it's launched.
//
// TODO(yy): Expose blockbeat to the link layer.
ht.MineEmptyBlocks(1)
// We expect to see three sweeping txns:
// 1. Bob's sweeping tx for all timeout HTLCs.
// 2. Bob's sweeping tx for all success HTLCs.
// 3. Carol's sweeping tx for her commit output.
// Mine a block to confirm them.
ht.MineBlocksAndAssertNumTxes(1, 3)
// For this channel, we also check the number of HTLCs and the stage
// are correct.
ht.AssertNumHTLCsAndStage(bob, bobChanPoint, numInvoices*2, 2)
// For non-leased channels, we can now mine one block so Bob will sweep
// his to_local output.
if params.CommitmentType != leasedType {
// Mine one block so Bob's to_local becomes mature.
ht.MineBlocks(1)
// Bob should offer the to_local output to his sweeper now.
ht.AssertNumPendingSweeps(bob, 1)
// Mine a block to confirm Bob's sweeping of his to_local
// output.
ht.MineBlocksAndAssertNumTxes(1, 1)
}
// Mine blocks till the CSV expires on Bob's HTLC output.
resp := ht.AssertNumPendingForceClose(bob, 1)[0]
require.Equal(ht, numInvoices*2, len(resp.PendingHtlcs))
ht.Logf("Bob's timelock to_local output=%v, timelock on second stage "+
"htlc=%v", resp.BlocksTilMaturity,
resp.PendingHtlcs[0].BlocksTilMaturity)
ht.MineBlocks(int(resp.PendingHtlcs[0].BlocksTilMaturity))
// With the above mined block, Bob's HTLCs should now all be offered to
// his sweeper since the CSV lock is now expired.
//
// For leased channel, due to the test setup, Bob's to_local output is
// now also mature and can be swept together with his HTLCs.
if params.CommitmentType == leasedType {
ht.AssertNumPendingSweeps(bob, numInvoices*2+1)
} else {
ht.AssertNumPendingSweeps(bob, numInvoices*2)
}
// When we mine one additional block, that will confirm Bob's second
// level sweep. Now Bob should have no pending channels anymore, as
// this just resolved it by the confirmation of the sweep tx.
ht.MineBlocksAndAssertNumTxes(1, 1)
ht.AssertNumPendingForceClose(bob, 0)
// Carol should have no channels left.
ht.AssertNumPendingForceClose(carol, 0)
}

View File

@ -6,7 +6,6 @@ import (
"testing"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/lncfg"
@ -16,8 +15,6 @@ import (
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/rpc"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/routing"
"github.com/stretchr/testify/require"
)
@ -159,460 +156,6 @@ func runMultiHopHtlcClaimTest(ht *lntest.HarnessTest, tester caseRunner) {
}
}
// testMultiHopHtlcAggregation tests that in a multi-hop HTLC scenario, if we
// force close a channel with both incoming and outgoing HTLCs, we can properly
// resolve them using the second level timeout and success transactions. In
// case of anchor channels, the second-level spends can also be aggregated and
// properly feebumped, so we'll check that as well.
func testMultiHopHtlcAggregation(ht *lntest.HarnessTest) {
runMultiHopHtlcClaimTest(ht, runMultiHopHtlcAggregation)
}
func runMultiHopHtlcAggregation(ht *lntest.HarnessTest,
alice, bob *node.HarnessNode, c lnrpc.CommitmentType, zeroConf bool) {
// We need one additional UTXO to create the sweeping tx for the
// second-level success txes.
ht.FundCoins(btcutil.SatoshiPerBitcoin, bob)
// First, we'll create a three hop network: Alice -> Bob -> Carol.
aliceChanPoint, bobChanPoint, carol := createThreeHopNetwork(
ht, alice, bob, false, c, zeroConf,
)
// If this is a taproot channel, then we'll need to make some manual
// route hints so Alice+Carol can actually find a route.
var (
carolRouteHints []*lnrpc.RouteHint
aliceRouteHints []*lnrpc.RouteHint
)
if c == lnrpc.CommitmentType_SIMPLE_TAPROOT {
carolRouteHints = makeRouteHints(bob, carol, zeroConf)
aliceRouteHints = makeRouteHints(bob, alice, zeroConf)
}
// To ensure we have capacity in both directions of the route, we'll
// make a fairly large payment Alice->Carol and settle it.
const reBalanceAmt = 500_000
invoice := &lnrpc.Invoice{
Value: reBalanceAmt,
RouteHints: carolRouteHints,
}
resp := carol.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(alice, []string{resp.PaymentRequest})
// Make sure Carol has settled the invoice.
ht.AssertInvoiceSettled(carol, resp.PaymentAddr)
// With the network active, we'll now add a new hodl invoices at both
// Alice's and Carol's end. Make sure the cltv expiry delta is large
// enough, otherwise Bob won't send out the outgoing htlc.
const numInvoices = 5
const invoiceAmt = 50_000
var (
carolInvoices []*invoicesrpc.AddHoldInvoiceResp
aliceInvoices []*invoicesrpc.AddHoldInvoiceResp
alicePreimages []lntypes.Preimage
payHashes [][]byte
invoiceStreamsCarol []rpc.SingleInvoiceClient
invoiceStreamsAlice []rpc.SingleInvoiceClient
)
// Add Carol invoices.
for i := 0; i < numInvoices; i++ {
var preimage lntypes.Preimage
copy(preimage[:], ht.Random32Bytes())
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: finalCltvDelta,
Hash: payHash[:],
RouteHints: carolRouteHints,
}
carolInvoice := carol.RPC.AddHoldInvoice(invoiceReq)
carolInvoices = append(carolInvoices, carolInvoice)
payHashes = append(payHashes, payHash[:])
// Subscribe the invoice.
stream := carol.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsCarol = append(invoiceStreamsCarol, stream)
}
// We'll give Alice's invoices a longer CLTV expiry, to ensure the
// channel Bob<->Carol will be closed first.
for i := 0; i < numInvoices; i++ {
var preimage lntypes.Preimage
copy(preimage[:], ht.Random32Bytes())
payHash := preimage.Hash()
invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{
Value: invoiceAmt,
CltvExpiry: thawHeightDelta - 4,
Hash: payHash[:],
RouteHints: aliceRouteHints,
}
aliceInvoice := alice.RPC.AddHoldInvoice(invoiceReq)
aliceInvoices = append(aliceInvoices, aliceInvoice)
alicePreimages = append(alicePreimages, preimage)
payHashes = append(payHashes, payHash[:])
// Subscribe the invoice.
stream := alice.RPC.SubscribeSingleInvoice(payHash[:])
invoiceStreamsAlice = append(invoiceStreamsAlice, stream)
}
// Now that we've created the invoices, we'll pay them all from
// Alice<->Carol, going through Bob. We won't wait for the response
// however, as neither will immediately settle the payment.
// Alice will pay all of Carol's invoices.
for _, carolInvoice := range carolInvoices {
req := &routerrpc.SendPaymentRequest{
PaymentRequest: carolInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
alice.RPC.SendPayment(req)
}
// And Carol will pay Alice's.
for _, aliceInvoice := range aliceInvoices {
req := &routerrpc.SendPaymentRequest{
PaymentRequest: aliceInvoice.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
carol.RPC.SendPayment(req)
}
// At this point, all 3 nodes should now the HTLCs active on their
// channels.
ht.AssertActiveHtlcs(alice, payHashes...)
ht.AssertActiveHtlcs(bob, payHashes...)
ht.AssertActiveHtlcs(carol, payHashes...)
// Wait for Alice and Carol to mark the invoices as accepted. There is
// a small gap to bridge between adding the htlc to the channel and
// executing the exit hop logic.
for _, stream := range invoiceStreamsCarol {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
for _, stream := range invoiceStreamsAlice {
ht.AssertInvoiceState(stream, lnrpc.Invoice_ACCEPTED)
}
// Increase the fee estimate so that the following force close tx will
// be cpfp'ed.
ht.SetFeeEstimate(30000)
// We want Carol's htlcs to expire off-chain to demonstrate bob's force
// close. However, Carol will cancel her invoices to prevent force
// closes, so we shut her down for now.
restartCarol := ht.SuspendNode(carol)
// We'll now mine enough blocks to trigger Bob's broadcast of his
// commitment transaction due to the fact that the Carol's HTLCs are
// about to timeout. With the default outgoing broadcast delta of zero,
// this will be the same height as the htlc expiry height.
numBlocks := padCLTV(
uint32(finalCltvDelta - lncfg.DefaultOutgoingBroadcastDelta),
)
ht.MineEmptyBlocks(int(numBlocks))
// Bob's force close transaction should now be found in the mempool. If
// there are anchors, we expect it to be offered to Bob's sweeper.
ht.AssertNumTxsInMempool(1)
// Bob has two anchor sweep requests, one for remote (invalid) and the
// other for local.
ht.AssertNumPendingSweeps(bob, 2)
closeTx := ht.AssertOutpointInMempool(
ht.OutPointFromChannelPoint(bobChanPoint),
)
closeTxid := closeTx.TxHash()
// Go through the closing transaction outputs, and make an index for
// the HTLC outputs.
successOuts := make(map[wire.OutPoint]struct{})
timeoutOuts := make(map[wire.OutPoint]struct{})
for i, txOut := range closeTx.TxOut {
op := wire.OutPoint{
Hash: closeTxid,
Index: uint32(i),
}
switch txOut.Value {
// If this HTLC goes towards Carol, Bob will claim it with a
// timeout Tx. In this case the value will be the invoice
// amount.
case invoiceAmt:
timeoutOuts[op] = struct{}{}
// If the HTLC has direction towards Alice, Bob will claim it
// with the success TX when he learns the preimage. In this
// case one extra sat will be on the output, because of the
// routing fee.
case invoiceAmt + 1:
successOuts[op] = struct{}{}
}
}
// Once bob has force closed, we can restart carol.
require.NoError(ht, restartCarol())
// Mine a block to confirm the closing transaction.
ht.MineBlocksAndAssertNumTxes(1, 1)
// The above mined block will trigger Bob to sweep his anchor output.
ht.AssertNumTxsInMempool(1)
// Let Alice settle her invoices. When Bob now gets the preimages, he
// has no other option than to broadcast his second-level transactions
// to claim the money.
for _, preimage := range alicePreimages {
alice.RPC.SettleInvoice(preimage[:])
}
expectedTxes := 0
switch c {
// In case of anchors, all success transactions will be aggregated into
// one, the same is the case for the timeout transactions. In this case
// Carol will also sweep her commitment and anchor output in a single
// tx.
case lnrpc.CommitmentType_ANCHORS,
lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE,
lnrpc.CommitmentType_SIMPLE_TAPROOT:
// Bob should have `numInvoices` for both HTLC success and
// timeout txns, plus one anchor sweep.
ht.AssertNumPendingSweeps(bob, numInvoices*2+1)
// Carol should have commit and anchor outputs.
ht.AssertNumPendingSweeps(carol, 2)
// We expect to see three sweeping txns:
// 1. Bob's sweeping tx for all timeout HTLCs.
// 2. Bob's sweeping tx for all success HTLCs.
// 3. Carol's sweeping tx for her commit and anchor outputs.
expectedTxes = 3
default:
ht.Fatalf("unhandled commitment type %v", c)
}
// Mine a block to confirm Bob's anchor sweeping, which will also
// trigger his sweeper to sweep HTLCs.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Assert the sweeping txns are found in the mempool.
txes := ht.GetNumTxsFromMempool(expectedTxes)
// Since Bob can aggregate the transactions, we expect a single
// transaction, that have multiple spends from the commitment.
var (
timeoutTxs []*chainhash.Hash
successTxs []*chainhash.Hash
)
for _, tx := range txes {
txid := tx.TxHash()
for i := range tx.TxIn {
prevOp := tx.TxIn[i].PreviousOutPoint
if _, ok := successOuts[prevOp]; ok {
successTxs = append(successTxs, &txid)
break
}
if _, ok := timeoutOuts[prevOp]; ok {
timeoutTxs = append(timeoutTxs, &txid)
break
}
}
}
// In case of anchor we expect all the timeout and success second
// levels to be aggregated into one tx. For earlier channel types, they
// will be separate transactions.
if lntest.CommitTypeHasAnchors(c) {
require.Len(ht, timeoutTxs, 1)
require.Len(ht, successTxs, 1)
} else {
require.Len(ht, timeoutTxs, numInvoices)
require.Len(ht, successTxs, numInvoices)
}
// All mempool transactions should be spending from the commitment
// transaction.
ht.AssertAllTxesSpendFrom(txes, closeTxid)
// Mine a block to confirm the all the transactions, including Carol's
// commitment tx, anchor tx(optional), and Bob's second-level timeout
// and success txes.
ht.MineBlocksAndAssertNumTxes(1, expectedTxes)
// At this point, Bob should have broadcast his second layer success
// transaction, and should have sent it to the nursery for incubation,
// or to the sweeper for sweeping.
forceCloseChan := ht.AssertNumPendingForceClose(bob, 1)[0]
ht.Logf("Bob's timelock on commit=%v, timelock on htlc=%v",
forceCloseChan.BlocksTilMaturity,
forceCloseChan.PendingHtlcs[0].BlocksTilMaturity)
// For this channel, we also check the number of HTLCs and the stage
// are correct.
ht.AssertNumHTLCsAndStage(bob, bobChanPoint, numInvoices*2, 2)
if c != lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE {
// If we then mine additional blocks, Bob can sweep his
// commitment output.
ht.MineEmptyBlocks(1)
// Assert the tx has been offered to the sweeper.
ht.AssertNumPendingSweeps(bob, 1)
// Mine one block to trigger the sweep.
ht.MineEmptyBlocks(1)
// Find the commitment sweep.
bobCommitSweep := ht.GetNumTxsFromMempool(1)[0]
ht.AssertTxSpendFrom(bobCommitSweep, closeTxid)
// Also ensure it is not spending from any of the HTLC output.
for _, txin := range bobCommitSweep.TxIn {
for _, timeoutTx := range timeoutTxs {
require.NotEqual(ht, *timeoutTx,
txin.PreviousOutPoint.Hash,
"found unexpected spend of timeout tx")
}
for _, successTx := range successTxs {
require.NotEqual(ht, *successTx,
txin.PreviousOutPoint.Hash,
"found unexpected spend of success tx")
}
}
}
switch c {
// Mining one additional block, Bob's second level tx is mature, and he
// can sweep the output. Before the blocks are mined, we should expect
// to see Bob's commit sweep in the mempool.
case lnrpc.CommitmentType_ANCHORS, lnrpc.CommitmentType_SIMPLE_TAPROOT:
ht.MineBlocksAndAssertNumTxes(1, 1)
// Since Bob is the initiator of the Bob-Carol script-enforced leased
// channel, he incurs an additional CLTV when sweeping outputs back to
// his wallet. We'll need to mine enough blocks for the timelock to
// expire to prompt his broadcast.
case lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE:
resp := bob.RPC.PendingChannels()
require.Len(ht, resp.PendingForceClosingChannels, 1)
forceCloseChan := resp.PendingForceClosingChannels[0]
require.Positive(ht, forceCloseChan.BlocksTilMaturity)
numBlocks := uint32(forceCloseChan.BlocksTilMaturity)
// Add debug log.
height := ht.CurrentHeight()
bob.AddToLogf("itest: now mine %d blocks at height %d",
numBlocks, height)
ht.MineEmptyBlocks(int(numBlocks) - 1)
default:
ht.Fatalf("unhandled commitment type %v", c)
}
// Make sure Bob's sweeper has received all the sweeping requests.
ht.AssertNumPendingSweeps(bob, numInvoices*2)
// Mine one block to trigger the sweeps.
ht.MineEmptyBlocks(1)
// For leased channels, Bob's commit output will mature after the above
// block.
if c == lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE {
ht.AssertNumPendingSweeps(bob, numInvoices*2+1)
}
// We now wait for 30 seconds to overcome the flake - there's a block
// race between contractcourt and sweeper, causing the sweep to be
// broadcast earlier.
//
// TODO(yy): remove this once `blockbeat` is in place.
numExpected := 1
err := wait.NoError(func() error {
mem := ht.GetRawMempool()
if len(mem) == numExpected {
return nil
}
if len(mem) > 0 {
numExpected = len(mem)
}
return fmt.Errorf("want %d, got %v in mempool: %v", numExpected,
len(mem), mem)
}, wait.DefaultTimeout)
ht.Logf("Checking mempool got: %v", err)
// Make sure it spends from the second level tx.
secondLevelSweep := ht.GetNumTxsFromMempool(numExpected)[0]
bobSweep := secondLevelSweep.TxHash()
// It should be sweeping all the second-level outputs.
var secondLvlSpends int
for _, txin := range secondLevelSweep.TxIn {
for _, timeoutTx := range timeoutTxs {
if *timeoutTx == txin.PreviousOutPoint.Hash {
secondLvlSpends++
}
}
for _, successTx := range successTxs {
if *successTx == txin.PreviousOutPoint.Hash {
secondLvlSpends++
}
}
}
// TODO(yy): bring the following check back when `blockbeat` is in
// place - atm we may have two sweeping transactions in the mempool.
// require.Equal(ht, 2*numInvoices, secondLvlSpends)
// When we mine one additional block, that will confirm Bob's second
// level sweep. Now Bob should have no pending channels anymore, as
// this just resolved it by the confirmation of the sweep transaction.
block := ht.MineBlocksAndAssertNumTxes(1, numExpected)[0]
ht.AssertTxInBlock(block, bobSweep)
// For leased channels, we need to mine one more block to confirm Bob's
// commit output sweep.
//
// NOTE: we mine this block conditionally, as the commit output may
// have already been swept one block earlier due to the race in block
// consumption among subsystems.
pendingChanResp := bob.RPC.PendingChannels()
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
ht.MineBlocksAndAssertNumTxes(1, 1)
}
ht.AssertNumPendingForceClose(bob, 0)
// THe channel with Alice is still open.
ht.AssertNodeNumChannels(bob, 1)
// Carol should have no channels left (open nor pending).
ht.AssertNumPendingForceClose(carol, 0)
ht.AssertNodeNumChannels(carol, 0)
// Coop close, no anchors.
ht.CloseChannel(alice, aliceChanPoint)
}
// createThreeHopNetwork creates a topology of `Alice -> Bob -> Carol`.
func createThreeHopNetwork(ht *lntest.HarnessTest,
alice, bob *node.HarnessNode, carolHodl bool, c lnrpc.CommitmentType,