Merge pull request #5197 from mempool/simon/sha256-secure-context-workaround

Sha256 P2PK secure context workaround
This commit is contained in:
softsimon 2024-06-24 13:22:55 +09:00 committed by GitHub
commit 868dac91c7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 462 additions and 2 deletions

View File

@ -1,4 +1,5 @@
import { Transaction, Vin } from './interfaces/electrs.interface';
import { Hash } from './shared/sha256';
const P2SH_P2WPKH_COST = 21 * 4; // the WU cost for the non-witness part of P2SH-P2WPKH
const P2SH_P2WSH_COST = 35 * 4; // the WU cost for the non-witness part of P2SH-P2WSH
@ -292,8 +293,8 @@ export async function calcScriptHash$(script: string): Promise<string> {
throw new Error('script is not a valid hex string');
}
const buf = Uint8Array.from(script.match(/.{2}/g).map((byte) => parseInt(byte, 16)));
const hashBuffer = await crypto.subtle.digest('SHA-256', buf);
const hashArray = Array.from(new Uint8Array(hashBuffer));
const hash = new Hash().update(buf).digest();
const hashArray = Array.from(new Uint8Array(hash));
return hashArray
.map((bytes) => bytes.toString(16).padStart(2, '0'))
.join('');

View File

@ -0,0 +1,459 @@
// SHA-256 (+ HMAC and PBKDF2) for JavaScript.
//
// Written in 2014-2016 by Dmitry Chestnykh.
// Public domain, no warranty.
//
// Functions (accept and return Uint8Arrays):
//
// sha256(message) -> hash
// sha256.hmac(key, message) -> mac
// sha256.pbkdf2(password, salt, rounds, dkLen) -> dk
//
// Classes:
//
// new sha256.Hash()
// new sha256.HMAC(key)
//
export const digestLength: number = 32;
export const blockSize: number = 64;
// SHA-256 constants
const K = new Uint32Array([
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,
0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01,
0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7,
0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152,
0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,
0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08,
0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f,
0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]);
function hashBlocks(w: Int32Array, v: Int32Array, p: Uint8Array, pos: number, len: number): number {
let a: number, b: number, c: number, d: number, e: number,
f: number, g: number, h: number, u: number, i: number,
j: number, t1: number, t2: number;
while (len >= 64) {
a = v[0];
b = v[1];
c = v[2];
d = v[3];
e = v[4];
f = v[5];
g = v[6];
h = v[7];
for (i = 0; i < 16; i++) {
j = pos + i * 4;
w[i] = (((p[j] & 0xff) << 24) | ((p[j + 1] & 0xff) << 16) |
((p[j + 2] & 0xff) << 8) | (p[j + 3] & 0xff));
}
for (i = 16; i < 64; i++) {
u = w[i - 2];
t1 = (u >>> 17 | u << (32 - 17)) ^ (u >>> 19 | u << (32 - 19)) ^ (u >>> 10);
u = w[i - 15];
t2 = (u >>> 7 | u << (32 - 7)) ^ (u >>> 18 | u << (32 - 18)) ^ (u >>> 3);
w[i] = (t1 + w[i - 7] | 0) + (t2 + w[i - 16] | 0);
}
for (i = 0; i < 64; i++) {
t1 = (((((e >>> 6 | e << (32 - 6)) ^ (e >>> 11 | e << (32 - 11)) ^
(e >>> 25 | e << (32 - 25))) + ((e & f) ^ (~e & g))) | 0) +
((h + ((K[i] + w[i]) | 0)) | 0)) | 0;
t2 = (((a >>> 2 | a << (32 - 2)) ^ (a >>> 13 | a << (32 - 13)) ^
(a >>> 22 | a << (32 - 22))) + ((a & b) ^ (a & c) ^ (b & c))) | 0;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
v[0] += a;
v[1] += b;
v[2] += c;
v[3] += d;
v[4] += e;
v[5] += f;
v[6] += g;
v[7] += h;
pos += 64;
len -= 64;
}
return pos;
}
// Hash implements SHA256 hash algorithm.
export class Hash {
digestLength: number = digestLength;
blockSize: number = blockSize;
// Note: Int32Array is used instead of Uint32Array for performance reasons.
private state: Int32Array = new Int32Array(8); // hash state
private temp: Int32Array = new Int32Array(64); // temporary state
private buffer: Uint8Array = new Uint8Array(128); // buffer for data to hash
private bufferLength: number = 0; // number of bytes in buffer
private bytesHashed: number = 0; // number of total bytes hashed
finished: boolean = false; // indicates whether the hash was finalized
constructor() {
this.reset();
}
// Resets hash state making it possible
// to re-use this instance to hash other data.
reset(): this {
this.state[0] = 0x6a09e667;
this.state[1] = 0xbb67ae85;
this.state[2] = 0x3c6ef372;
this.state[3] = 0xa54ff53a;
this.state[4] = 0x510e527f;
this.state[5] = 0x9b05688c;
this.state[6] = 0x1f83d9ab;
this.state[7] = 0x5be0cd19;
this.bufferLength = 0;
this.bytesHashed = 0;
this.finished = false;
return this;
}
// Cleans internal buffers and re-initializes hash state.
clean() {
for (let i = 0; i < this.buffer.length; i++) {
this.buffer[i] = 0;
}
for (let i = 0; i < this.temp.length; i++) {
this.temp[i] = 0;
}
this.reset();
}
// Updates hash state with the given data.
//
// Optionally, length of the data can be specified to hash
// fewer bytes than data.length.
//
// Throws error when trying to update already finalized hash:
// instance must be reset to use it again.
update(data: Uint8Array, dataLength: number = data.length): this {
if (this.finished) {
throw new Error("SHA256: can't update because hash was finished.");
}
let dataPos = 0;
this.bytesHashed += dataLength;
if (this.bufferLength > 0) {
while (this.bufferLength < 64 && dataLength > 0) {
this.buffer[this.bufferLength++] = data[dataPos++];
dataLength--;
}
if (this.bufferLength === 64) {
hashBlocks(this.temp, this.state, this.buffer, 0, 64);
this.bufferLength = 0;
}
}
if (dataLength >= 64) {
dataPos = hashBlocks(this.temp, this.state, data, dataPos, dataLength);
dataLength %= 64;
}
while (dataLength > 0) {
this.buffer[this.bufferLength++] = data[dataPos++];
dataLength--;
}
return this;
}
// Finalizes hash state and puts hash into out.
//
// If hash was already finalized, puts the same value.
finish(out: Uint8Array): this {
if (!this.finished) {
const bytesHashed = this.bytesHashed;
const left = this.bufferLength;
const bitLenHi = (bytesHashed / 0x20000000) | 0;
const bitLenLo = bytesHashed << 3;
const padLength = (bytesHashed % 64 < 56) ? 64 : 128;
this.buffer[left] = 0x80;
for (let i = left + 1; i < padLength - 8; i++) {
this.buffer[i] = 0;
}
this.buffer[padLength - 8] = (bitLenHi >>> 24) & 0xff;
this.buffer[padLength - 7] = (bitLenHi >>> 16) & 0xff;
this.buffer[padLength - 6] = (bitLenHi >>> 8) & 0xff;
this.buffer[padLength - 5] = (bitLenHi >>> 0) & 0xff;
this.buffer[padLength - 4] = (bitLenLo >>> 24) & 0xff;
this.buffer[padLength - 3] = (bitLenLo >>> 16) & 0xff;
this.buffer[padLength - 2] = (bitLenLo >>> 8) & 0xff;
this.buffer[padLength - 1] = (bitLenLo >>> 0) & 0xff;
hashBlocks(this.temp, this.state, this.buffer, 0, padLength);
this.finished = true;
}
for (let i = 0; i < 8; i++) {
out[i * 4 + 0] = (this.state[i] >>> 24) & 0xff;
out[i * 4 + 1] = (this.state[i] >>> 16) & 0xff;
out[i * 4 + 2] = (this.state[i] >>> 8) & 0xff;
out[i * 4 + 3] = (this.state[i] >>> 0) & 0xff;
}
return this;
}
// Returns the final hash digest.
digest(): Uint8Array {
const out = new Uint8Array(this.digestLength);
this.finish(out);
return out;
}
// Internal function for use in HMAC for optimization.
_saveState(out: Uint32Array) {
for (let i = 0; i < this.state.length; i++) {
out[i] = this.state[i];
}
}
// Internal function for use in HMAC for optimization.
_restoreState(from: Uint32Array, bytesHashed: number) {
for (let i = 0; i < this.state.length; i++) {
this.state[i] = from[i];
}
this.bytesHashed = bytesHashed;
this.finished = false;
this.bufferLength = 0;
}
}
// HMAC implements HMAC-SHA256 message authentication algorithm.
export class HMAC {
private inner: Hash = new Hash();
private outer: Hash = new Hash();
blockSize: number = this.inner.blockSize;
digestLength: number = this.inner.digestLength;
// Copies of hash states after keying.
// Need for quick reset without hashing they key again.
private istate: Uint32Array;
private ostate: Uint32Array;
constructor(key: Uint8Array) {
const pad = new Uint8Array(this.blockSize);
if (key.length > this.blockSize) {
(new Hash()).update(key).finish(pad).clean();
} else {
for (let i = 0; i < key.length; i++) {
pad[i] = key[i];
}
}
for (let i = 0; i < pad.length; i++) {
pad[i] ^= 0x36;
}
this.inner.update(pad);
for (let i = 0; i < pad.length; i++) {
pad[i] ^= 0x36 ^ 0x5c;
}
this.outer.update(pad);
this.istate = new Uint32Array(8);
this.ostate = new Uint32Array(8);
this.inner._saveState(this.istate);
this.outer._saveState(this.ostate);
for (let i = 0; i < pad.length; i++) {
pad[i] = 0;
}
}
// Returns HMAC state to the state initialized with key
// to make it possible to run HMAC over the other data with the same
// key without creating a new instance.
reset(): this {
this.inner._restoreState(this.istate, this.inner.blockSize);
this.outer._restoreState(this.ostate, this.outer.blockSize);
return this;
}
// Cleans HMAC state.
clean() {
for (let i = 0; i < this.istate.length; i++) {
this.ostate[i] = this.istate[i] = 0;
}
this.inner.clean();
this.outer.clean();
}
// Updates state with provided data.
update(data: Uint8Array): this {
this.inner.update(data);
return this;
}
// Finalizes HMAC and puts the result in out.
finish(out: Uint8Array): this {
if (this.outer.finished) {
this.outer.finish(out);
} else {
this.inner.finish(out);
this.outer.update(out, this.digestLength).finish(out);
}
return this;
}
// Returns message authentication code.
digest(): Uint8Array {
const out = new Uint8Array(this.digestLength);
this.finish(out);
return out;
}
}
// Returns SHA256 hash of data.
export function hash(data: Uint8Array): Uint8Array {
const h = (new Hash()).update(data);
const digest = h.digest();
h.clean();
return digest;
}
// Function hash is both available as module.hash and as default export.
export default hash;
// Returns HMAC-SHA256 of data under the key.
export function hmac(key: Uint8Array, data: Uint8Array) {
const h = (new HMAC(key)).update(data);
const digest = h.digest();
h.clean();
return digest;
}
// Fills hkdf buffer like this:
// T(1) = HMAC-Hash(PRK, T(0) | info | 0x01)
function fillBuffer(buffer: Uint8Array, hmac: HMAC, info: Uint8Array | undefined, counter: Uint8Array) {
// Counter is a byte value: check if it overflowed.
const num = counter[0];
if (num === 0) {
throw new Error("hkdf: cannot expand more");
}
// Prepare HMAC instance for new data with old key.
hmac.reset();
// Hash in previous output if it was generated
// (i.e. counter is greater than 1).
if (num > 1) {
hmac.update(buffer);
}
// Hash in info if it exists.
if (info) {
hmac.update(info);
}
// Hash in the counter.
hmac.update(counter);
// Output result to buffer and clean HMAC instance.
hmac.finish(buffer);
// Increment counter inside typed array, this works properly.
counter[0]++;
}
const hkdfSalt = new Uint8Array(digestLength); // Filled with zeroes.
export function hkdf(key: Uint8Array, salt: Uint8Array = hkdfSalt, info?: Uint8Array, length: number = 32) {
const counter = new Uint8Array([1]);
// HKDF-Extract uses salt as HMAC key, and key as data.
const okm = hmac(salt, key);
// Initialize HMAC for expanding with extracted key.
// Ensure no collisions with `hmac` function.
const hmac_ = new HMAC(okm);
// Allocate buffer.
const buffer = new Uint8Array(hmac_.digestLength);
let bufpos = buffer.length;
const out = new Uint8Array(length);
for (let i = 0; i < length; i++) {
if (bufpos === buffer.length) {
fillBuffer(buffer, hmac_, info, counter);
bufpos = 0;
}
out[i] = buffer[bufpos++];
}
hmac_.clean();
buffer.fill(0);
counter.fill(0);
return out;
}
// Derives a key from password and salt using PBKDF2-HMAC-SHA256
// with the given number of iterations.
//
// The number of bytes returned is equal to dkLen.
//
// (For better security, avoid dkLen greater than hash length - 32 bytes).
export function pbkdf2(password: Uint8Array, salt: Uint8Array, iterations: number, dkLen: number) {
const prf = new HMAC(password);
const len = prf.digestLength;
const ctr = new Uint8Array(4);
const t = new Uint8Array(len);
const u = new Uint8Array(len);
const dk = new Uint8Array(dkLen);
for (let i = 0; i * len < dkLen; i++) {
let c = i + 1;
ctr[0] = (c >>> 24) & 0xff;
ctr[1] = (c >>> 16) & 0xff;
ctr[2] = (c >>> 8) & 0xff;
ctr[3] = (c >>> 0) & 0xff;
prf.reset();
prf.update(salt);
prf.update(ctr);
prf.finish(u);
for (let j = 0; j < len; j++) {
t[j] = u[j];
}
for (let j = 2; j <= iterations; j++) {
prf.reset();
prf.update(u).finish(u);
for (let k = 0; k < len; k++) {
t[k] ^= u[k];
}
}
for (let j = 0; j < len && i * len + j < dkLen; j++) {
dk[i * len + j] = t[j];
}
}
for (let i = 0; i < len; i++) {
t[i] = u[i] = 0;
}
for (let i = 0; i < 4; i++) {
ctr[i] = 0;
}
prf.clean();
return dk;
}