mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-11-18 19:37:07 +01:00
Merge branch 'main' into backends-nserver
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -173,3 +173,4 @@ db/*
|
||||
backends/nserver/venv
|
||||
backends/nserver/cache
|
||||
backends/nserver/modules/image_upscale/weights
|
||||
cache/
|
||||
|
||||
11
README.md
11
README.md
@@ -11,9 +11,10 @@ This means the project is in alpha status, interfaces might still change/break a
|
||||
|
||||
Create a new venv by running `"python -m venv venv"`
|
||||
- Place .env file (based on .env_example) in main folder.
|
||||
- the framework will automatically create keys for your dvms in this file.
|
||||
- Install requirements.txt
|
||||
- Run python main.py.
|
||||
- Create a `LNbits` account on an accessible instance of your choice, enter one account's id and admin key (this account will create other accounts for the dvms)
|
||||
- the framework will then automatically create keys, nip89 tags and zapable NIP57 `lightning addresses` for your dvms in this file.
|
||||
- pip install nostr-dvm
|
||||
- Run python3 main.py.
|
||||
|
||||
In each task component DVM examples are already prepared. Feel free to play along with the existing ones.
|
||||
You can also add new tasks by using the interface, just like the existing tasks in the `tasks` folder.
|
||||
@@ -21,8 +22,6 @@ You can also add new tasks by using the interface, just like the existing tasks
|
||||
A `bot` is running by default that lists and communicates with the `DVMs` added to it,
|
||||
so your DVMs can be controled via any regular social client as well.
|
||||
|
||||
The Framework optionally supports `LNbits` to create invoices instead of using a `lightning address`. If LNBits is not used,
|
||||
make sure your nostr accounts have a valid lightning address.
|
||||
|
||||
If LNBits is not used, make sure your DVM's nostr accounts have a valid lightning address.
|
||||
|
||||
A tutorial on how to add additional tasks, as well as the larger server backend will be added at a later stage.
|
||||
|
||||
0
backends/__init__.py
Normal file
0
backends/__init__.py
Normal file
0
backends/mlx/__init__.py
Normal file
0
backends/mlx/__init__.py
Normal file
0
backends/mlx/stable_diffusion/__init__.py
Normal file
0
backends/mlx/stable_diffusion/__init__.py
Normal file
70
backends/mlx/stable_diffusion/clip.py
Normal file
70
backends/mlx/stable_diffusion/clip.py
Normal file
@@ -0,0 +1,70 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .config import CLIPTextModelConfig
|
||||
|
||||
|
||||
class CLIPEncoderLayer(nn.Module):
|
||||
"""The transformer encoder layer from CLIP."""
|
||||
|
||||
def __init__(self, model_dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.layer_norm1 = nn.LayerNorm(model_dims)
|
||||
self.layer_norm2 = nn.LayerNorm(model_dims)
|
||||
|
||||
self.attention = nn.MultiHeadAttention(model_dims, num_heads)
|
||||
# Add biases to the attention projections to match CLIP
|
||||
self.attention.query_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.key_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.value_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.out_proj.bias = mx.zeros(model_dims)
|
||||
|
||||
self.linear1 = nn.Linear(model_dims, 4 * model_dims)
|
||||
self.linear2 = nn.Linear(4 * model_dims, model_dims)
|
||||
|
||||
def __call__(self, x, attn_mask=None):
|
||||
y = self.layer_norm1(x)
|
||||
y = self.attention(y, y, y, attn_mask)
|
||||
x = y + x
|
||||
|
||||
y = self.layer_norm2(x)
|
||||
y = self.linear1(y)
|
||||
y = nn.gelu_approx(y)
|
||||
y = self.linear2(y)
|
||||
x = y + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CLIPTextModel(nn.Module):
|
||||
"""Implements the text encoder transformer from CLIP."""
|
||||
|
||||
def __init__(self, config: CLIPTextModelConfig):
|
||||
super().__init__()
|
||||
|
||||
self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
|
||||
self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
|
||||
self.layers = [
|
||||
CLIPEncoderLayer(config.model_dims, config.num_heads)
|
||||
for i in range(config.num_layers)
|
||||
]
|
||||
self.final_layer_norm = nn.LayerNorm(config.model_dims)
|
||||
|
||||
def __call__(self, x):
|
||||
# Extract some shapes
|
||||
B, N = x.shape
|
||||
|
||||
# Compute the embeddings
|
||||
x = self.token_embedding(x)
|
||||
x = x + self.position_embedding.weight[:N]
|
||||
|
||||
# Compute the features from the transformer
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
|
||||
for l in self.layers:
|
||||
x = l(x, mask)
|
||||
|
||||
# Apply the final layernorm and return
|
||||
return self.final_layer_norm(x)
|
||||
48
backends/mlx/stable_diffusion/config.py
Normal file
48
backends/mlx/stable_diffusion/config.py
Normal file
@@ -0,0 +1,48 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple
|
||||
|
||||
|
||||
@dataclass
|
||||
class AutoencoderConfig:
|
||||
in_channels: int = 3
|
||||
out_channels: int = 3
|
||||
latent_channels_out: int = 8
|
||||
latent_channels_in: int = 4
|
||||
block_out_channels: Tuple[int] = (128, 256, 512, 512)
|
||||
layers_per_block: int = 2
|
||||
norm_num_groups: int = 32
|
||||
scaling_factor: float = 0.18215
|
||||
|
||||
|
||||
@dataclass
|
||||
class CLIPTextModelConfig:
|
||||
num_layers: int = 23
|
||||
model_dims: int = 1024
|
||||
num_heads: int = 16
|
||||
max_length: int = 77
|
||||
vocab_size: int = 49408
|
||||
|
||||
|
||||
@dataclass
|
||||
class UNetConfig:
|
||||
in_channels: int = 4
|
||||
out_channels: int = 4
|
||||
conv_in_kernel: int = 3
|
||||
conv_out_kernel: int = 3
|
||||
block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
|
||||
layers_per_block: Tuple[int] = (2, 2, 2, 2)
|
||||
mid_block_layers: int = 2
|
||||
transformer_layers_per_block: Tuple[int] = (1, 1, 1, 1)
|
||||
num_attention_heads: Tuple[int] = (5, 10, 20, 20)
|
||||
cross_attention_dim: Tuple[int] = (1024,) * 4
|
||||
norm_num_groups: int = 32
|
||||
|
||||
|
||||
@dataclass
|
||||
class DiffusionConfig:
|
||||
beta_schedule: str = "scaled_linear"
|
||||
beta_start: float = 0.00085
|
||||
beta_end: float = 0.012
|
||||
num_train_steps: int = 1000
|
||||
292
backends/mlx/stable_diffusion/model_io.py
Normal file
292
backends/mlx/stable_diffusion/model_io.py
Normal file
@@ -0,0 +1,292 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import json
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import hf_hub_download
|
||||
from safetensors import safe_open as safetensor_open
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_unflatten
|
||||
|
||||
from .clip import CLIPTextModel
|
||||
from .config import UNetConfig, CLIPTextModelConfig, AutoencoderConfig, DiffusionConfig
|
||||
from .tokenizer import Tokenizer
|
||||
from .unet import UNetModel
|
||||
from .vae import Autoencoder
|
||||
|
||||
|
||||
_DEFAULT_MODEL = "stabilityai/stable-diffusion-2-1-base"
|
||||
_MODELS = {
|
||||
# See https://huggingface.co/stabilityai/stable-diffusion-2-1-base for the model details and license
|
||||
"stabilityai/stable-diffusion-2-1-base": {
|
||||
"unet_config": "unet/config.json",
|
||||
"unet": "unet/diffusion_pytorch_model.safetensors",
|
||||
"text_encoder_config": "text_encoder/config.json",
|
||||
"text_encoder": "text_encoder/model.safetensors",
|
||||
"vae_config": "vae/config.json",
|
||||
"vae": "vae/diffusion_pytorch_model.safetensors",
|
||||
"diffusion_config": "scheduler/scheduler_config.json",
|
||||
"tokenizer_vocab": "tokenizer/vocab.json",
|
||||
"tokenizer_merges": "tokenizer/merges.txt",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _from_numpy(x):
|
||||
return mx.array(np.ascontiguousarray(x))
|
||||
|
||||
|
||||
def map_unet_weights(key, value):
|
||||
# Map up/downsampling
|
||||
if "downsamplers" in key:
|
||||
key = key.replace("downsamplers.0.conv", "downsample")
|
||||
if "upsamplers" in key:
|
||||
key = key.replace("upsamplers.0.conv", "upsample")
|
||||
|
||||
# Map the mid block
|
||||
if "mid_block.resnets.0" in key:
|
||||
key = key.replace("mid_block.resnets.0", "mid_blocks.0")
|
||||
if "mid_block.attentions.0" in key:
|
||||
key = key.replace("mid_block.attentions.0", "mid_blocks.1")
|
||||
if "mid_block.resnets.1" in key:
|
||||
key = key.replace("mid_block.resnets.1", "mid_blocks.2")
|
||||
|
||||
# Map attention layers
|
||||
if "to_k" in key:
|
||||
key = key.replace("to_k", "key_proj")
|
||||
if "to_out.0" in key:
|
||||
key = key.replace("to_out.0", "out_proj")
|
||||
if "to_q" in key:
|
||||
key = key.replace("to_q", "query_proj")
|
||||
if "to_v" in key:
|
||||
key = key.replace("to_v", "value_proj")
|
||||
|
||||
# Map transformer ffn
|
||||
if "ff.net.2" in key:
|
||||
key = key.replace("ff.net.2", "linear3")
|
||||
if "ff.net.0" in key:
|
||||
k1 = key.replace("ff.net.0.proj", "linear1")
|
||||
k2 = key.replace("ff.net.0.proj", "linear2")
|
||||
v1, v2 = np.split(value, 2)
|
||||
|
||||
return [(k1, _from_numpy(v1)), (k2, _from_numpy(v2))]
|
||||
|
||||
if "conv_shortcut.weight" in key:
|
||||
value = value.squeeze()
|
||||
|
||||
# Transform the weights from 1x1 convs to linear
|
||||
if len(value.shape) == 4 and ("proj_in" in key or "proj_out" in key):
|
||||
value = value.squeeze()
|
||||
|
||||
if len(value.shape) == 4:
|
||||
value = value.transpose(0, 2, 3, 1)
|
||||
|
||||
return [(key, _from_numpy(value))]
|
||||
|
||||
|
||||
def map_clip_text_encoder_weights(key, value):
|
||||
# Remove prefixes
|
||||
if key.startswith("text_model."):
|
||||
key = key[11:]
|
||||
if key.startswith("embeddings."):
|
||||
key = key[11:]
|
||||
if key.startswith("encoder."):
|
||||
key = key[8:]
|
||||
|
||||
# Map attention layers
|
||||
if "self_attn." in key:
|
||||
key = key.replace("self_attn.", "attention.")
|
||||
if "q_proj." in key:
|
||||
key = key.replace("q_proj.", "query_proj.")
|
||||
if "k_proj." in key:
|
||||
key = key.replace("k_proj.", "key_proj.")
|
||||
if "v_proj." in key:
|
||||
key = key.replace("v_proj.", "value_proj.")
|
||||
|
||||
# Map ffn layers
|
||||
if "mlp.fc1" in key:
|
||||
key = key.replace("mlp.fc1", "linear1")
|
||||
if "mlp.fc2" in key:
|
||||
key = key.replace("mlp.fc2", "linear2")
|
||||
|
||||
return [(key, _from_numpy(value))]
|
||||
|
||||
|
||||
def map_vae_weights(key, value):
|
||||
# Map up/downsampling
|
||||
if "downsamplers" in key:
|
||||
key = key.replace("downsamplers.0.conv", "downsample")
|
||||
if "upsamplers" in key:
|
||||
key = key.replace("upsamplers.0.conv", "upsample")
|
||||
|
||||
# Map attention layers
|
||||
if "to_k" in key:
|
||||
key = key.replace("to_k", "key_proj")
|
||||
if "to_out.0" in key:
|
||||
key = key.replace("to_out.0", "out_proj")
|
||||
if "to_q" in key:
|
||||
key = key.replace("to_q", "query_proj")
|
||||
if "to_v" in key:
|
||||
key = key.replace("to_v", "value_proj")
|
||||
|
||||
# Map the mid block
|
||||
if "mid_block.resnets.0" in key:
|
||||
key = key.replace("mid_block.resnets.0", "mid_blocks.0")
|
||||
if "mid_block.attentions.0" in key:
|
||||
key = key.replace("mid_block.attentions.0", "mid_blocks.1")
|
||||
if "mid_block.resnets.1" in key:
|
||||
key = key.replace("mid_block.resnets.1", "mid_blocks.2")
|
||||
|
||||
# Map the quant/post_quant layers
|
||||
if "quant_conv" in key:
|
||||
key = key.replace("quant_conv", "quant_proj")
|
||||
value = value.squeeze()
|
||||
|
||||
# Map the conv_shortcut to linear
|
||||
if "conv_shortcut.weight" in key:
|
||||
value = value.squeeze()
|
||||
|
||||
if len(value.shape) == 4:
|
||||
value = value.transpose(0, 2, 3, 1)
|
||||
|
||||
return [(key, _from_numpy(value))]
|
||||
|
||||
|
||||
def _flatten(params):
|
||||
return [(k, v) for p in params for (k, v) in p]
|
||||
|
||||
|
||||
def _load_safetensor_weights(mapper, model, weight_file, float16: bool = False):
|
||||
dtype = np.float16 if float16 else np.float32
|
||||
with safetensor_open(weight_file, framework="numpy") as f:
|
||||
weights = _flatten([mapper(k, f.get_tensor(k).astype(dtype)) for k in f.keys()])
|
||||
model.update(tree_unflatten(weights))
|
||||
|
||||
|
||||
def _check_key(key: str, part: str):
|
||||
if key not in _MODELS:
|
||||
raise ValueError(
|
||||
f"[{part}] '{key}' model not found, choose one of {{{','.join(_MODELS.keys())}}}"
|
||||
)
|
||||
|
||||
|
||||
def load_unet(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion UNet from Hugging Face Hub."""
|
||||
_check_key(key, "load_unet")
|
||||
|
||||
# Download the config and create the model
|
||||
unet_config = _MODELS[key]["unet_config"]
|
||||
with open(hf_hub_download(key, unet_config)) as f:
|
||||
config = json.load(f)
|
||||
|
||||
n_blocks = len(config["block_out_channels"])
|
||||
model = UNetModel(
|
||||
UNetConfig(
|
||||
in_channels=config["in_channels"],
|
||||
out_channels=config["out_channels"],
|
||||
block_out_channels=config["block_out_channels"],
|
||||
layers_per_block=[config["layers_per_block"]] * n_blocks,
|
||||
num_attention_heads=[config["attention_head_dim"]] * n_blocks
|
||||
if isinstance(config["attention_head_dim"], int)
|
||||
else config["attention_head_dim"],
|
||||
cross_attention_dim=[config["cross_attention_dim"]] * n_blocks,
|
||||
norm_num_groups=config["norm_num_groups"],
|
||||
)
|
||||
)
|
||||
|
||||
# Download the weights and map them into the model
|
||||
unet_weights = _MODELS[key]["unet"]
|
||||
weight_file = hf_hub_download(key, unet_weights)
|
||||
_load_safetensor_weights(map_unet_weights, model, weight_file, float16)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_text_encoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion text encoder from Hugging Face Hub."""
|
||||
_check_key(key, "load_text_encoder")
|
||||
|
||||
# Download the config and create the model
|
||||
text_encoder_config = _MODELS[key]["text_encoder_config"]
|
||||
with open(hf_hub_download(key, text_encoder_config)) as f:
|
||||
config = json.load(f)
|
||||
|
||||
model = CLIPTextModel(
|
||||
CLIPTextModelConfig(
|
||||
num_layers=config["num_hidden_layers"],
|
||||
model_dims=config["hidden_size"],
|
||||
num_heads=config["num_attention_heads"],
|
||||
max_length=config["max_position_embeddings"],
|
||||
vocab_size=config["vocab_size"],
|
||||
)
|
||||
)
|
||||
|
||||
# Download the weights and map them into the model
|
||||
text_encoder_weights = _MODELS[key]["text_encoder"]
|
||||
weight_file = hf_hub_download(key, text_encoder_weights)
|
||||
_load_safetensor_weights(map_clip_text_encoder_weights, model, weight_file, float16)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_autoencoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion autoencoder from Hugging Face Hub."""
|
||||
_check_key(key, "load_autoencoder")
|
||||
|
||||
# Download the config and create the model
|
||||
vae_config = _MODELS[key]["vae_config"]
|
||||
with open(hf_hub_download(key, vae_config)) as f:
|
||||
config = json.load(f)
|
||||
|
||||
model = Autoencoder(
|
||||
AutoencoderConfig(
|
||||
in_channels=config["in_channels"],
|
||||
out_channels=config["out_channels"],
|
||||
latent_channels_out=2 * config["latent_channels"],
|
||||
latent_channels_in=config["latent_channels"],
|
||||
block_out_channels=config["block_out_channels"],
|
||||
layers_per_block=config["layers_per_block"],
|
||||
norm_num_groups=config["norm_num_groups"],
|
||||
)
|
||||
)
|
||||
|
||||
# Download the weights and map them into the model
|
||||
vae_weights = _MODELS[key]["vae"]
|
||||
weight_file = hf_hub_download(key, vae_weights)
|
||||
_load_safetensor_weights(map_vae_weights, model, weight_file, float16)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_diffusion_config(key: str = _DEFAULT_MODEL):
|
||||
"""Load the stable diffusion config from Hugging Face Hub."""
|
||||
_check_key(key, "load_diffusion_config")
|
||||
|
||||
diffusion_config = _MODELS[key]["diffusion_config"]
|
||||
with open(hf_hub_download(key, diffusion_config)) as f:
|
||||
config = json.load(f)
|
||||
|
||||
return DiffusionConfig(
|
||||
beta_start=config["beta_start"],
|
||||
beta_end=config["beta_end"],
|
||||
beta_schedule=config["beta_schedule"],
|
||||
num_train_steps=config["num_train_timesteps"],
|
||||
)
|
||||
|
||||
|
||||
def load_tokenizer(key: str = _DEFAULT_MODEL):
|
||||
_check_key(key, "load_tokenizer")
|
||||
|
||||
vocab_file = hf_hub_download(key, _MODELS[key]["tokenizer_vocab"])
|
||||
with open(vocab_file, encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
|
||||
merges_file = hf_hub_download(key, _MODELS[key]["tokenizer_merges"])
|
||||
with open(merges_file, encoding="utf-8") as f:
|
||||
bpe_merges = f.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1]
|
||||
bpe_merges = [tuple(m.split()) for m in bpe_merges]
|
||||
bpe_ranks = dict(map(reversed, enumerate(bpe_merges)))
|
||||
|
||||
return Tokenizer(bpe_ranks, vocab)
|
||||
74
backends/mlx/stable_diffusion/sampler.py
Normal file
74
backends/mlx/stable_diffusion/sampler.py
Normal file
@@ -0,0 +1,74 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
from .config import DiffusionConfig
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
def _linspace(a, b, num):
|
||||
x = mx.arange(0, num) / (num - 1)
|
||||
return (b - a) * x + a
|
||||
|
||||
|
||||
def _interp(y, x_new):
|
||||
"""Interpolate the function defined by (arange(0, len(y)), y) at positions x_new."""
|
||||
x_low = x_new.astype(mx.int32)
|
||||
x_high = mx.minimum(x_low + 1, len(y) - 1)
|
||||
|
||||
y_low = y[x_low]
|
||||
y_high = y[x_high]
|
||||
delta_x = x_new - x_low
|
||||
y_new = y_low * (1 - delta_x) + delta_x * y_high
|
||||
|
||||
return y_new
|
||||
|
||||
|
||||
class SimpleEulerSampler:
|
||||
"""A simple Euler integrator that can be used to sample from our diffusion models.
|
||||
|
||||
The method ``step()`` performs one Euler step from x_t to x_t_prev.
|
||||
"""
|
||||
|
||||
def __init__(self, config: DiffusionConfig):
|
||||
# Compute the noise schedule
|
||||
if config.beta_schedule == "linear":
|
||||
betas = _linspace(
|
||||
config.beta_start, config.beta_end, config.num_train_steps
|
||||
)
|
||||
elif config.beta_schedule == "scaled_linear":
|
||||
betas = _linspace(
|
||||
config.beta_start**0.5, config.beta_end**0.5, config.num_train_steps
|
||||
).square()
|
||||
else:
|
||||
raise NotImplementedError(f"{config.beta_schedule} is not implemented.")
|
||||
|
||||
alphas = 1 - betas
|
||||
alphas_cumprod = mx.cumprod(alphas)
|
||||
|
||||
self._sigmas = mx.concatenate(
|
||||
[mx.zeros(1), ((1 - alphas_cumprod) / alphas_cumprod).sqrt()]
|
||||
)
|
||||
|
||||
def sample_prior(self, shape, dtype=mx.float32, key=None):
|
||||
noise = mx.random.normal(shape, key=key)
|
||||
return (
|
||||
noise * self._sigmas[-1] * (self._sigmas[-1].square() + 1).rsqrt()
|
||||
).astype(dtype)
|
||||
|
||||
def sigmas(self, t):
|
||||
return _interp(self._sigmas, t)
|
||||
|
||||
def timesteps(self, num_steps: int, dtype=mx.float32):
|
||||
steps = _linspace(len(self._sigmas) - 1, 0, num_steps + 1).astype(dtype)
|
||||
return list(zip(steps, steps[1:]))
|
||||
|
||||
def step(self, eps_pred, x_t, t, t_prev):
|
||||
sigma = self.sigmas(t).astype(eps_pred.dtype)
|
||||
sigma_prev = self.sigmas(t_prev).astype(eps_pred.dtype)
|
||||
|
||||
dt = sigma_prev - sigma
|
||||
x_t_prev = (sigma.square() + 1).sqrt() * x_t + eps_pred * dt
|
||||
|
||||
x_t_prev = x_t_prev * (sigma_prev.square() + 1).rsqrt()
|
||||
|
||||
return x_t_prev
|
||||
100
backends/mlx/stable_diffusion/tokenizer.py
Normal file
100
backends/mlx/stable_diffusion/tokenizer.py
Normal file
@@ -0,0 +1,100 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import regex
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
"""A simple port of CLIPTokenizer from https://github.com/huggingface/transformers/ ."""
|
||||
|
||||
def __init__(self, bpe_ranks, vocab):
|
||||
self.bpe_ranks = bpe_ranks
|
||||
self.vocab = vocab
|
||||
self.pat = regex.compile(
|
||||
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
||||
regex.IGNORECASE,
|
||||
)
|
||||
|
||||
self._cache = {self.bos: self.bos, self.eos: self.eos}
|
||||
|
||||
@property
|
||||
def bos(self):
|
||||
return "<|startoftext|>"
|
||||
|
||||
@property
|
||||
def bos_token(self):
|
||||
return self.vocab[self.bos]
|
||||
|
||||
@property
|
||||
def eos(self):
|
||||
return "<|endoftext|>"
|
||||
|
||||
@property
|
||||
def eos_token(self):
|
||||
return self.vocab[self.eos]
|
||||
|
||||
def bpe(self, text):
|
||||
if text in self._cache:
|
||||
return self._cache[text]
|
||||
|
||||
unigrams = list(text[:-1]) + [text[-1] + "</w>"]
|
||||
unique_bigrams = set(zip(unigrams, unigrams[1:]))
|
||||
|
||||
if not unique_bigrams:
|
||||
return unigrams
|
||||
|
||||
# In every iteration try to merge the two most likely bigrams. If none
|
||||
# was merged we are done.
|
||||
#
|
||||
# Ported from https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/tokenization_clip.py
|
||||
while unique_bigrams:
|
||||
bigram = min(
|
||||
unique_bigrams, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))
|
||||
)
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
|
||||
new_unigrams = []
|
||||
skip = False
|
||||
for a, b in zip(unigrams, unigrams[1:]):
|
||||
if skip:
|
||||
skip = False
|
||||
continue
|
||||
|
||||
if (a, b) == bigram:
|
||||
new_unigrams.append(a + b)
|
||||
skip = True
|
||||
|
||||
else:
|
||||
new_unigrams.append(a)
|
||||
|
||||
if not skip:
|
||||
new_unigrams.append(b)
|
||||
|
||||
unigrams = new_unigrams
|
||||
unique_bigrams = set(zip(unigrams, unigrams[1:]))
|
||||
|
||||
self._cache[text] = unigrams
|
||||
|
||||
return unigrams
|
||||
|
||||
def tokenize(self, text, prepend_bos=True, append_eos=True):
|
||||
if isinstance(text, list):
|
||||
return [self.tokenize(t, prepend_bos, append_eos) for t in text]
|
||||
|
||||
# Lower case cleanup and split according to self.pat. Hugging Face does
|
||||
# a much more thorough job here but this should suffice for 95% of
|
||||
# cases.
|
||||
clean_text = regex.sub(r"\s+", " ", text.lower())
|
||||
tokens = regex.findall(self.pat, clean_text)
|
||||
|
||||
# Split the tokens according to the byte-pair merge file
|
||||
bpe_tokens = [ti for t in tokens for ti in self.bpe(t)]
|
||||
|
||||
# Map to token ids and return
|
||||
tokens = [self.vocab[t] for t in bpe_tokens]
|
||||
if prepend_bos:
|
||||
tokens = [self.bos_token] + tokens
|
||||
if append_eos:
|
||||
tokens.append(self.eos_token)
|
||||
|
||||
return tokens
|
||||
425
backends/mlx/stable_diffusion/unet.py
Normal file
425
backends/mlx/stable_diffusion/unet.py
Normal file
@@ -0,0 +1,425 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .config import UNetConfig
|
||||
|
||||
|
||||
def upsample_nearest(x, scale: int = 2):
|
||||
B, H, W, C = x.shape
|
||||
x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
|
||||
x = x.reshape(B, H * scale, W * scale, C)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(self, in_channels: int, time_embed_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
||||
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.linear_1(x)
|
||||
x = nn.silu(x)
|
||||
x = self.linear_2(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dims: int,
|
||||
num_heads: int,
|
||||
hidden_dims: Optional[int] = None,
|
||||
memory_dims: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = nn.LayerNorm(model_dims)
|
||||
self.attn1 = nn.MultiHeadAttention(model_dims, num_heads)
|
||||
self.attn1.out_proj.bias = mx.zeros(model_dims)
|
||||
|
||||
memory_dims = memory_dims or model_dims
|
||||
self.norm2 = nn.LayerNorm(model_dims)
|
||||
self.attn2 = nn.MultiHeadAttention(
|
||||
model_dims, num_heads, key_input_dims=memory_dims
|
||||
)
|
||||
self.attn2.out_proj.bias = mx.zeros(model_dims)
|
||||
|
||||
hidden_dims = hidden_dims or 4 * model_dims
|
||||
self.norm3 = nn.LayerNorm(model_dims)
|
||||
self.linear1 = nn.Linear(model_dims, hidden_dims)
|
||||
self.linear2 = nn.Linear(model_dims, hidden_dims)
|
||||
self.linear3 = nn.Linear(hidden_dims, model_dims)
|
||||
|
||||
def __call__(self, x, memory, attn_mask, memory_mask):
|
||||
# Self attention
|
||||
y = self.norm1(x)
|
||||
y = self.attn1(y, y, y, attn_mask)
|
||||
x = x + y
|
||||
|
||||
# Cross attention
|
||||
y = self.norm2(x)
|
||||
y = self.attn2(y, memory, memory, memory_mask)
|
||||
x = x + y
|
||||
|
||||
# FFN
|
||||
y = self.norm3(x)
|
||||
y_a = self.linear1(y)
|
||||
y_b = self.linear2(y)
|
||||
y = y_a * nn.gelu_approx(y_b) # approximate gelu?
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Transformer2D(nn.Module):
|
||||
"""A transformer model for inputs with 2 spatial dimensions."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
model_dims: int,
|
||||
encoder_dims: int,
|
||||
num_heads: int,
|
||||
num_layers: int = 1,
|
||||
norm_num_groups: int = 32,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm = nn.GroupNorm(norm_num_groups, in_channels, pytorch_compatible=True)
|
||||
self.proj_in = nn.Linear(in_channels, model_dims)
|
||||
self.transformer_blocks = [
|
||||
TransformerBlock(model_dims, num_heads, memory_dims=encoder_dims)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
self.proj_out = nn.Linear(model_dims, in_channels)
|
||||
|
||||
def __call__(self, x, encoder_x, attn_mask, encoder_attn_mask):
|
||||
# Save the input to add to the output
|
||||
input_x = x
|
||||
|
||||
# Perform the input norm and projection
|
||||
B, H, W, C = x.shape
|
||||
x = self.norm(x).reshape(B, -1, C)
|
||||
x = self.proj_in(x)
|
||||
|
||||
# Apply the transformer
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, encoder_x, attn_mask, encoder_attn_mask)
|
||||
|
||||
# Apply the output projection and reshape
|
||||
x = self.proj_out(x)
|
||||
x = x.reshape(B, H, W, C)
|
||||
|
||||
return x + input_x
|
||||
|
||||
|
||||
class ResnetBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: Optional[int] = None,
|
||||
groups: int = 32,
|
||||
temb_channels: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
out_channels = out_channels or in_channels
|
||||
|
||||
self.norm1 = nn.GroupNorm(groups, in_channels, pytorch_compatible=True)
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
if temb_channels is not None:
|
||||
self.time_emb_proj = nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = nn.GroupNorm(groups, out_channels, pytorch_compatible=True)
|
||||
self.conv2 = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
if in_channels != out_channels:
|
||||
self.conv_shortcut = nn.Linear(in_channels, out_channels)
|
||||
|
||||
def __call__(self, x, temb=None):
|
||||
if temb is not None:
|
||||
temb = self.time_emb_proj(nn.silu(temb))
|
||||
|
||||
y = self.norm1(x)
|
||||
y = nn.silu(y)
|
||||
y = self.conv1(y)
|
||||
if temb is not None:
|
||||
y = y + temb[:, None, None, :]
|
||||
y = self.norm2(y)
|
||||
y = nn.silu(y)
|
||||
y = self.conv2(y)
|
||||
|
||||
x = y + (x if "conv_shortcut" not in self else self.conv_shortcut(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class UNetBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
temb_channels: int,
|
||||
prev_out_channels: Optional[int] = None,
|
||||
num_layers: int = 1,
|
||||
transformer_layers_per_block: int = 1,
|
||||
num_attention_heads: int = 8,
|
||||
cross_attention_dim=1280,
|
||||
resnet_groups: int = 32,
|
||||
add_downsample=True,
|
||||
add_upsample=True,
|
||||
add_cross_attention=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Prepare the in channels list for the resnets
|
||||
if prev_out_channels is None:
|
||||
in_channels_list = [in_channels] + [out_channels] * (num_layers - 1)
|
||||
else:
|
||||
in_channels_list = [prev_out_channels] + [out_channels] * (num_layers - 1)
|
||||
res_channels_list = [out_channels] * (num_layers - 1) + [in_channels]
|
||||
in_channels_list = [
|
||||
a + b for a, b in zip(in_channels_list, res_channels_list)
|
||||
]
|
||||
|
||||
# Add resnet blocks that also process the time embedding
|
||||
self.resnets = [
|
||||
ResnetBlock2D(
|
||||
in_channels=ic,
|
||||
out_channels=out_channels,
|
||||
temb_channels=temb_channels,
|
||||
groups=resnet_groups,
|
||||
)
|
||||
for ic in in_channels_list
|
||||
]
|
||||
|
||||
# Add optional cross attention layers
|
||||
if add_cross_attention:
|
||||
self.attentions = [
|
||||
Transformer2D(
|
||||
in_channels=out_channels,
|
||||
model_dims=out_channels,
|
||||
num_heads=num_attention_heads,
|
||||
num_layers=transformer_layers_per_block,
|
||||
encoder_dims=cross_attention_dim,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
|
||||
# Add an optional downsampling layer
|
||||
if add_downsample:
|
||||
self.downsample = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=2, padding=1
|
||||
)
|
||||
|
||||
# or upsampling layer
|
||||
if add_upsample:
|
||||
self.upsample = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x,
|
||||
encoder_x=None,
|
||||
temb=None,
|
||||
attn_mask=None,
|
||||
encoder_attn_mask=None,
|
||||
residual_hidden_states=None,
|
||||
):
|
||||
output_states = []
|
||||
|
||||
for i in range(len(self.resnets)):
|
||||
if residual_hidden_states is not None:
|
||||
x = mx.concatenate([x, residual_hidden_states.pop()], axis=-1)
|
||||
|
||||
x = self.resnets[i](x, temb)
|
||||
|
||||
if "attentions" in self:
|
||||
x = self.attentions[i](x, encoder_x, attn_mask, encoder_attn_mask)
|
||||
|
||||
output_states.append(x)
|
||||
|
||||
if "downsample" in self:
|
||||
x = self.downsample(x)
|
||||
output_states.append(x)
|
||||
|
||||
if "upsample" in self:
|
||||
x = self.upsample(upsample_nearest(x))
|
||||
output_states.append(x)
|
||||
|
||||
return x, output_states
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""The conditional 2D UNet model that actually performs the denoising."""
|
||||
|
||||
def __init__(self, config: UNetConfig):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = nn.Conv2d(
|
||||
config.in_channels,
|
||||
config.block_out_channels[0],
|
||||
config.conv_in_kernel,
|
||||
padding=(config.conv_in_kernel - 1) // 2,
|
||||
)
|
||||
|
||||
self.timesteps = nn.SinusoidalPositionalEncoding(
|
||||
config.block_out_channels[0],
|
||||
max_freq=1,
|
||||
min_freq=math.exp(
|
||||
-math.log(10000) + 2 * math.log(10000) / config.block_out_channels[0]
|
||||
),
|
||||
scale=1.0,
|
||||
cos_first=True,
|
||||
full_turns=False,
|
||||
)
|
||||
self.time_embedding = TimestepEmbedding(
|
||||
config.block_out_channels[0],
|
||||
config.block_out_channels[0] * 4,
|
||||
)
|
||||
|
||||
# Make the downsampling blocks
|
||||
block_channels = [config.block_out_channels[0]] + list(
|
||||
config.block_out_channels
|
||||
)
|
||||
self.down_blocks = [
|
||||
UNetBlock2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=config.block_out_channels[0] * 4,
|
||||
num_layers=config.layers_per_block[i],
|
||||
transformer_layers_per_block=config.transformer_layers_per_block[i],
|
||||
num_attention_heads=config.num_attention_heads[i],
|
||||
cross_attention_dim=config.cross_attention_dim[i],
|
||||
resnet_groups=config.norm_num_groups,
|
||||
add_downsample=(i < len(config.block_out_channels) - 1),
|
||||
add_upsample=False,
|
||||
add_cross_attention=(i < len(config.block_out_channels) - 1),
|
||||
)
|
||||
for i, (in_channels, out_channels) in enumerate(
|
||||
zip(block_channels, block_channels[1:])
|
||||
)
|
||||
]
|
||||
|
||||
# Make the middle block
|
||||
self.mid_blocks = [
|
||||
ResnetBlock2D(
|
||||
in_channels=config.block_out_channels[-1],
|
||||
out_channels=config.block_out_channels[-1],
|
||||
temb_channels=config.block_out_channels[0] * 4,
|
||||
groups=config.norm_num_groups,
|
||||
),
|
||||
Transformer2D(
|
||||
in_channels=config.block_out_channels[-1],
|
||||
model_dims=config.block_out_channels[-1],
|
||||
num_heads=config.num_attention_heads[-1],
|
||||
num_layers=config.transformer_layers_per_block[-1],
|
||||
encoder_dims=config.cross_attention_dim[-1],
|
||||
),
|
||||
ResnetBlock2D(
|
||||
in_channels=config.block_out_channels[-1],
|
||||
out_channels=config.block_out_channels[-1],
|
||||
temb_channels=config.block_out_channels[0] * 4,
|
||||
groups=config.norm_num_groups,
|
||||
),
|
||||
]
|
||||
|
||||
# Make the upsampling blocks
|
||||
block_channels = (
|
||||
[config.block_out_channels[0]]
|
||||
+ list(config.block_out_channels)
|
||||
+ [config.block_out_channels[-1]]
|
||||
)
|
||||
self.up_blocks = [
|
||||
UNetBlock2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
temb_channels=config.block_out_channels[0] * 4,
|
||||
prev_out_channels=prev_out_channels,
|
||||
num_layers=config.layers_per_block[i] + 1,
|
||||
transformer_layers_per_block=config.transformer_layers_per_block[i],
|
||||
num_attention_heads=config.num_attention_heads[i],
|
||||
cross_attention_dim=config.cross_attention_dim[i],
|
||||
resnet_groups=config.norm_num_groups,
|
||||
add_downsample=False,
|
||||
add_upsample=(i > 0),
|
||||
add_cross_attention=(i < len(config.block_out_channels) - 1),
|
||||
)
|
||||
for i, (in_channels, out_channels, prev_out_channels) in reversed(
|
||||
list(
|
||||
enumerate(
|
||||
zip(block_channels, block_channels[1:], block_channels[2:])
|
||||
)
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
self.conv_norm_out = nn.GroupNorm(
|
||||
config.norm_num_groups,
|
||||
config.block_out_channels[0],
|
||||
pytorch_compatible=True,
|
||||
)
|
||||
self.conv_out = nn.Conv2d(
|
||||
config.block_out_channels[0],
|
||||
config.out_channels,
|
||||
config.conv_out_kernel,
|
||||
padding=(config.conv_out_kernel - 1) // 2,
|
||||
)
|
||||
|
||||
def __call__(self, x, timestep, encoder_x, attn_mask=None, encoder_attn_mask=None):
|
||||
|
||||
# Compute the time embeddings
|
||||
temb = self.timesteps(timestep).astype(x.dtype)
|
||||
temb = self.time_embedding(temb)
|
||||
|
||||
# Preprocess the input
|
||||
x = self.conv_in(x)
|
||||
|
||||
# Run the downsampling part of the unet
|
||||
residuals = [x]
|
||||
for block in self.down_blocks:
|
||||
x, res = block(
|
||||
x,
|
||||
encoder_x=encoder_x,
|
||||
temb=temb,
|
||||
attn_mask=attn_mask,
|
||||
encoder_attn_mask=encoder_attn_mask,
|
||||
)
|
||||
residuals.extend(res)
|
||||
|
||||
# Run the middle part of the unet
|
||||
x = self.mid_blocks[0](x, temb)
|
||||
x = self.mid_blocks[1](x, encoder_x, attn_mask, encoder_attn_mask)
|
||||
x = self.mid_blocks[2](x, temb)
|
||||
|
||||
# Run the upsampling part of the unet
|
||||
for block in self.up_blocks:
|
||||
x, _ = block(
|
||||
x,
|
||||
encoder_x=encoder_x,
|
||||
temb=temb,
|
||||
attn_mask=attn_mask,
|
||||
encoder_attn_mask=encoder_attn_mask,
|
||||
residual_hidden_states=residuals,
|
||||
)
|
||||
|
||||
# Postprocess the output
|
||||
x = self.conv_norm_out(x)
|
||||
x = nn.silu(x)
|
||||
x = self.conv_out(x)
|
||||
|
||||
return x
|
||||
268
backends/mlx/stable_diffusion/vae.py
Normal file
268
backends/mlx/stable_diffusion/vae.py
Normal file
@@ -0,0 +1,268 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .config import AutoencoderConfig
|
||||
from .unet import ResnetBlock2D, upsample_nearest
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""A single head unmasked attention for use with the VAE."""
|
||||
|
||||
def __init__(self, dims: int, norm_groups: int = 32):
|
||||
super().__init__()
|
||||
|
||||
self.group_norm = nn.GroupNorm(norm_groups, dims, pytorch_compatible=True)
|
||||
self.query_proj = nn.Linear(dims, dims)
|
||||
self.key_proj = nn.Linear(dims, dims)
|
||||
self.value_proj = nn.Linear(dims, dims)
|
||||
self.out_proj = nn.Linear(dims, dims)
|
||||
|
||||
def __call__(self, x):
|
||||
B, H, W, C = x.shape
|
||||
|
||||
y = self.group_norm(x)
|
||||
|
||||
queries = self.query_proj(y).reshape(B, H * W, C)
|
||||
keys = self.key_proj(y).reshape(B, H * W, C)
|
||||
values = self.value_proj(y).reshape(B, H * W, C)
|
||||
|
||||
scale = 1 / math.sqrt(queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 2, 1)
|
||||
attn = mx.softmax(scores, axis=-1)
|
||||
y = (attn @ values).reshape(B, H, W, C)
|
||||
|
||||
y = self.out_proj(y)
|
||||
x = x + y
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class EncoderDecoderBlock2D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
num_layers: int = 1,
|
||||
resnet_groups: int = 32,
|
||||
add_downsample=True,
|
||||
add_upsample=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Add the resnet blocks
|
||||
self.resnets = [
|
||||
ResnetBlock2D(
|
||||
in_channels=in_channels if i == 0 else out_channels,
|
||||
out_channels=out_channels,
|
||||
groups=resnet_groups,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
|
||||
# Add an optional downsampling layer
|
||||
if add_downsample:
|
||||
self.downsample = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=2, padding=1
|
||||
)
|
||||
|
||||
# or upsampling layer
|
||||
if add_upsample:
|
||||
self.upsample = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
for resnet in self.resnets:
|
||||
x = resnet(x)
|
||||
|
||||
if "downsample" in self:
|
||||
x = self.downsample(x)
|
||||
|
||||
if "upsample" in self:
|
||||
x = self.upsample(upsample_nearest(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""Implements the encoder side of the Autoencoder."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
block_out_channels: List[int] = [64],
|
||||
layers_per_block: int = 2,
|
||||
resnet_groups: int = 32,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = nn.Conv2d(
|
||||
in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
channels = [block_out_channels[0]] + list(block_out_channels)
|
||||
self.down_blocks = [
|
||||
EncoderDecoderBlock2D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
num_layers=layers_per_block,
|
||||
resnet_groups=resnet_groups,
|
||||
add_downsample=i < len(block_out_channels) - 1,
|
||||
add_upsample=False,
|
||||
)
|
||||
for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
|
||||
]
|
||||
|
||||
self.mid_blocks = [
|
||||
ResnetBlock2D(
|
||||
in_channels=block_out_channels[-1],
|
||||
out_channels=block_out_channels[-1],
|
||||
groups=resnet_groups,
|
||||
),
|
||||
Attention(block_out_channels[-1], resnet_groups),
|
||||
ResnetBlock2D(
|
||||
in_channels=block_out_channels[-1],
|
||||
out_channels=block_out_channels[-1],
|
||||
groups=resnet_groups,
|
||||
),
|
||||
]
|
||||
|
||||
self.conv_norm_out = nn.GroupNorm(
|
||||
resnet_groups, block_out_channels[-1], pytorch_compatible=True
|
||||
)
|
||||
self.conv_out = nn.Conv2d(block_out_channels[-1], out_channels, 3, padding=1)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv_in(x)
|
||||
|
||||
for l in self.down_blocks:
|
||||
x = l(x)
|
||||
|
||||
x = self.mid_blocks[0](x)
|
||||
x = self.mid_blocks[1](x)
|
||||
x = self.mid_blocks[2](x)
|
||||
|
||||
x = self.conv_norm_out(x)
|
||||
x = nn.silu(x)
|
||||
x = self.conv_out(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""Implements the decoder side of the Autoencoder."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
block_out_channels: List[int] = [64],
|
||||
layers_per_block: int = 2,
|
||||
resnet_groups: int = 32,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = nn.Conv2d(
|
||||
in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
self.mid_blocks = [
|
||||
ResnetBlock2D(
|
||||
in_channels=block_out_channels[-1],
|
||||
out_channels=block_out_channels[-1],
|
||||
groups=resnet_groups,
|
||||
),
|
||||
Attention(block_out_channels[-1], resnet_groups),
|
||||
ResnetBlock2D(
|
||||
in_channels=block_out_channels[-1],
|
||||
out_channels=block_out_channels[-1],
|
||||
groups=resnet_groups,
|
||||
),
|
||||
]
|
||||
|
||||
channels = list(reversed(block_out_channels))
|
||||
channels = [channels[0]] + channels
|
||||
self.up_blocks = [
|
||||
EncoderDecoderBlock2D(
|
||||
in_channels,
|
||||
out_channels,
|
||||
num_layers=layers_per_block,
|
||||
resnet_groups=resnet_groups,
|
||||
add_downsample=False,
|
||||
add_upsample=i < len(block_out_channels) - 1,
|
||||
)
|
||||
for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
|
||||
]
|
||||
|
||||
self.conv_norm_out = nn.GroupNorm(
|
||||
resnet_groups, block_out_channels[0], pytorch_compatible=True
|
||||
)
|
||||
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv_in(x)
|
||||
|
||||
x = self.mid_blocks[0](x)
|
||||
x = self.mid_blocks[1](x)
|
||||
x = self.mid_blocks[2](x)
|
||||
|
||||
for l in self.up_blocks:
|
||||
x = l(x)
|
||||
|
||||
x = self.conv_norm_out(x)
|
||||
x = nn.silu(x)
|
||||
x = self.conv_out(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Autoencoder(nn.Module):
|
||||
"""The autoencoder that allows us to perform diffusion in the latent space."""
|
||||
|
||||
def __init__(self, config: AutoencoderConfig):
|
||||
super().__init__()
|
||||
|
||||
self.latent_channels = config.latent_channels_in
|
||||
self.scaling_factor = config.scaling_factor
|
||||
self.encoder = Encoder(
|
||||
config.in_channels,
|
||||
config.latent_channels_out,
|
||||
config.block_out_channels,
|
||||
config.layers_per_block,
|
||||
resnet_groups=config.norm_num_groups,
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
config.latent_channels_in,
|
||||
config.out_channels,
|
||||
config.block_out_channels,
|
||||
config.layers_per_block + 1,
|
||||
resnet_groups=config.norm_num_groups,
|
||||
)
|
||||
|
||||
self.quant_proj = nn.Linear(
|
||||
config.latent_channels_out, config.latent_channels_out
|
||||
)
|
||||
self.post_quant_proj = nn.Linear(
|
||||
config.latent_channels_in, config.latent_channels_in
|
||||
)
|
||||
|
||||
def decode(self, z):
|
||||
return self.decoder(self.post_quant_proj(z))
|
||||
|
||||
def __call__(self, x, key=None):
|
||||
x = self.encoder(x)
|
||||
x = self.quant_proj(x)
|
||||
|
||||
mean, logvar = x.split(2, axis=-1)
|
||||
std = mx.exp(0.5 * logvar)
|
||||
z = mx.random.normal(mean.shape, key=key) * std + mean
|
||||
|
||||
x_hat = self.decode(z)
|
||||
|
||||
return dict(x_hat=x_hat, z=z, mean=mean, logvar=logvar)
|
||||
17
examples/ollama_dvm/.env_example
Normal file
17
examples/ollama_dvm/.env_example
Normal file
@@ -0,0 +1,17 @@
|
||||
#Create an account with a lnbits instance of your choice, add the admin key and id here. This account will be used to create a new lnbits wallet for each dvm/bot
|
||||
LNBITS_ADMIN_KEY = ""
|
||||
LNBITS_ADMIN_ID = ""
|
||||
LNBITS_HOST = "https://lnbits.com" #Use your own/a trusted instance ideally.
|
||||
# In order to create a zappable lightning address, host nostdress on your domain or use this preinstalled domain.
|
||||
# We will use the api to create and manage zapable lightning addresses
|
||||
NOSTDRESS_DOMAIN = "nostrdvm.com"
|
||||
|
||||
#Backend Specific Options for tasks that require them. A DVM needing these should only be started if these are set.
|
||||
OPENAI_API_KEY = "" # Enter your OpenAI API Key to use DVMs with OpenAI services
|
||||
|
||||
# We will automatically create dtags and private keys based on the identifier variable in main.
|
||||
# If your DVM already has a dtag and private key you can replace it here before publishing the DTAG to not create a new one.
|
||||
# The name and NIP90 info of the DVM can be changed but the identifier must stay the same in order to not create a different dtag.
|
||||
|
||||
# We will also create new wallets on the given lnbits instance for each dvm. If you want to use an existing wallet, you can replace the parameters here as well.
|
||||
# Make sure you backup this file to keep access to your wallets
|
||||
26
examples/ollama_dvm/README.md
Normal file
26
examples/ollama_dvm/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# NostrAI: Nostr NIP90 Data Vending Machine Framework Example
|
||||
|
||||
Projects in this folder contain ready-to-use DVMs. To tun the DVM following the next steps:
|
||||
|
||||
## To get started:
|
||||
- Install Python 3.10
|
||||
|
||||
|
||||
Create a new venv in this directory by opening the terminal here, or navigate to this directory and type: `"python -m venv venv"`
|
||||
- Place .env file (based on .env_example) in this folder.
|
||||
- Recommended but optional:
|
||||
- Create a `LNbits` account on an accessible instance of your choice, enter one account's id and admin key (this account will create other accounts for the dvms) Open the .env file and enter this info to `LNBITS_ADMIN_KEY`, `LNBITS_ADMIN_ID`, `LNBITS_HOST`.
|
||||
- If you are running an own instance of `Nostdress` enter `NOSTDRESS_DOMAIN` or use the default one.
|
||||
- Activate the venv with
|
||||
- MacOS/Linux: source ./venv/bin/activate
|
||||
- Windows: .\venv\Scripts\activate
|
||||
- Type: `pip install nostr-dvm`
|
||||
- Run `python3 main.py` (or python main.py)
|
||||
- The framework will then automatically create keys, nip89 tags and zapable NIP57 `lightning addresses` for your dvms in this file.
|
||||
- Check the .env file if these values look correct.
|
||||
- Check the `main.py` file. You can update the image/description/name of your DVM before announcing it.
|
||||
- You can then in main.py set `admin_config.REBROADCAST_NIP89` and
|
||||
`admin_config.UPDATE_PROFILE` to `True` to announce the NIP89 info and update the npubs profile automatically.
|
||||
- After this was successful you can set these back to False until the next time you want to update the NIP89 or profile.
|
||||
|
||||
You are now running your own DVM.
|
||||
54
examples/ollama_dvm/main.py
Normal file
54
examples/ollama_dvm/main.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
import dotenv
|
||||
|
||||
from nostr_dvm.tasks.textgeneration_llmlite import TextGenerationLLMLite
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.dvmconfig import build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
|
||||
|
||||
def main():
|
||||
identifier = "llama2"
|
||||
name = "Ollama"
|
||||
|
||||
dvm_config = build_default_config(identifier)
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
|
||||
options = {'default_model': "ollama/llama2", 'server': "http://localhost:11434"}
|
||||
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I use a LLM connected via OLLAMA",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
ollama = TextGenerationLLMLite(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config,
|
||||
options=options)
|
||||
ollama.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if not env_path.is_file():
|
||||
with open('.env', 'w') as f:
|
||||
print("Writing new .env file")
|
||||
f.write('')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
main()
|
||||
94
examples/ollama_dvm/test_client.py
Normal file
94
examples/ollama_dvm/test_client.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import dotenv
|
||||
from nostr_sdk import Keys, Client, Tag, EventBuilder, Filter, HandleNotification, Timestamp, nip04_decrypt
|
||||
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig
|
||||
from nostr_dvm.utils.nostr_utils import send_event, check_and_set_private_key
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
|
||||
|
||||
def nostr_client_test_llm(prompt):
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
|
||||
iTag = Tag.parse(["i", prompt, "text"])
|
||||
relaysTag = Tag.parse(['relays', "wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"])
|
||||
alttag = Tag.parse(["alt", "This is a NIP90 DVM AI task to generate TTSt"])
|
||||
event = EventBuilder(EventDefinitions.KIND_NIP90_GENERATE_TEXT, str("Generate an Audio File."),
|
||||
[iTag, relaysTag, alttag]).to_event(keys)
|
||||
|
||||
relay_list = ["wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"]
|
||||
|
||||
client = Client(keys)
|
||||
for relay in relay_list:
|
||||
client.add_relay(relay)
|
||||
client.connect()
|
||||
config = DVMConfig
|
||||
send_event(event, client=client, dvm_config=config)
|
||||
return event.as_json()
|
||||
|
||||
def nostr_client():
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
sk = keys.secret_key()
|
||||
pk = keys.public_key()
|
||||
print(f"Nostr Test Client public key: {pk.to_bech32()}, Hex: {pk.to_hex()} ")
|
||||
client = Client(keys)
|
||||
dvmconfig = DVMConfig()
|
||||
for relay in dvmconfig.RELAY_LIST:
|
||||
client.add_relay(relay)
|
||||
client.connect()
|
||||
|
||||
dm_zap_filter = Filter().pubkey(pk).kinds([EventDefinitions.KIND_DM,
|
||||
EventDefinitions.KIND_ZAP]).since(
|
||||
Timestamp.now()) # events to us specific
|
||||
dvm_filter = (Filter().kinds([EventDefinitions.KIND_NIP90_RESULT_GENERATE_TEXT,
|
||||
EventDefinitions.KIND_FEEDBACK]).since(Timestamp.now())) # public events
|
||||
client.subscribe([dm_zap_filter, dvm_filter])
|
||||
|
||||
|
||||
nostr_client_test_llm("Tell me a joke about a purple Ostrich!")
|
||||
print("Sending Job Request")
|
||||
|
||||
|
||||
#nostr_client_test_image_private("a beautiful ostrich watching the sunset")
|
||||
class NotificationHandler(HandleNotification):
|
||||
def handle(self, relay_url, event):
|
||||
print(f"Received new event from {relay_url}: {event.as_json()}")
|
||||
if event.kind() == 7000:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
elif 6000 < event.kind() < 6999:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
print("[Nostr Client]: " + event.content())
|
||||
|
||||
elif event.kind() == 4:
|
||||
dec_text = nip04_decrypt(sk, event.pubkey(), event.content())
|
||||
print("[Nostr Client]: " + f"Received new msg: {dec_text}")
|
||||
|
||||
elif event.kind() == 9735:
|
||||
print("[Nostr Client]: " + f"Received new zap:")
|
||||
print(event.as_json())
|
||||
|
||||
def handle_msg(self, relay_url, msg):
|
||||
return
|
||||
|
||||
client.handle_notifications(NotificationHandler())
|
||||
while True:
|
||||
time.sleep(5.0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
nostr_dvm_thread = Thread(target=nostr_client())
|
||||
nostr_dvm_thread.start()
|
||||
15
examples/tts_dvm/.env_example
Normal file
15
examples/tts_dvm/.env_example
Normal file
@@ -0,0 +1,15 @@
|
||||
#Create an account with a lnbits instance of your choice, add the admin key and id here. This account will be used to create a new lnbits wallet for each dvm/bot
|
||||
LNBITS_ADMIN_KEY = ""
|
||||
LNBITS_ADMIN_ID = ""
|
||||
LNBITS_HOST = "https://lnbits.com" #Use your own/a trusted instance ideally.
|
||||
# In order to create a zappable lightning address, host nostdress on your domain or use this preinstalled domain.
|
||||
# We will use the api to create and manage zapable lightning addresses
|
||||
NOSTDRESS_DOMAIN = "nostrdvm.com"
|
||||
|
||||
|
||||
# We will automatically create dtags and private keys based on the identifier variable in main.
|
||||
# If your DVM already has a dtag and private key you can replace it here before publishing the DTAG to not create a new one.
|
||||
# The name and NIP90 info of the DVM can be changed but the identifier must stay the same in order to not create a different dtag.
|
||||
|
||||
# We will also create new wallets on the given lnbits instance for each dvm. If you want to use an existing wallet, you can replace the parameters here as well.
|
||||
# Make sure you backup this file to keep access to your wallets
|
||||
26
examples/tts_dvm/README.md
Normal file
26
examples/tts_dvm/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# NostrAI: Nostr NIP90 Data Vending Machine Framework Example
|
||||
|
||||
Projects in this folder contain ready-to-use DVMs. To tun the DVM following the next steps:
|
||||
|
||||
## To get started:
|
||||
- Install Python 3.10
|
||||
|
||||
|
||||
Create a new venv in this directory by opening the terminal here, or navigate to this directory and type: `"python -m venv venv"`
|
||||
- Place .env file (based on .env_example) in this folder.
|
||||
- Recommended but optional:
|
||||
- Create a `LNbits` account on an accessible instance of your choice, enter one account's id and admin key (this account will create other accounts for the dvms) Open the .env file and enter this info to `LNBITS_ADMIN_KEY`, `LNBITS_ADMIN_ID`, `LNBITS_HOST`.
|
||||
- If you are running an own instance of `Nostdress` enter `NOSTDRESS_DOMAIN` or use the default one.
|
||||
- Activate the venv with
|
||||
- MacOS/Linux: source ./venv/bin/activate
|
||||
- Windows: .\venv\Scripts\activate
|
||||
- Type: `pip install nostr-dvm`
|
||||
- Run `python3 main.py` (or python main.py)
|
||||
- The framework will then automatically create keys, nip89 tags and zapable NIP57 `lightning addresses` for your dvms in this file.
|
||||
- Check the .env file if these values look correct.
|
||||
- Check the `main.py` file. You can update the image/description/name of your DVM before announcing it.
|
||||
- You can then in main.py set `admin_config.REBROADCAST_NIP89` and
|
||||
`admin_config.UPDATE_PROFILE` to `True` to announce the NIP89 info and update the npubs profile automatically.
|
||||
- After this was successful you can set these back to False until the next time you want to update the NIP89 or profile.
|
||||
|
||||
You are now running your own DVM.
|
||||
60
examples/tts_dvm/main.py
Normal file
60
examples/tts_dvm/main.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
import dotenv
|
||||
from nostr_dvm.tasks.texttospeech import TextToSpeech
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.dvmconfig import build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
|
||||
|
||||
def main():
|
||||
identifier = "tts"
|
||||
name = "Guy Swann Clone"
|
||||
|
||||
dvm_config = build_default_config(identifier)
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
|
||||
# Use default file if paramter is empty, else overwrite with any local wav file
|
||||
options = {'input_file': ""}
|
||||
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I Generate Speech from Text",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
"language": {
|
||||
"required": False,
|
||||
"values": []
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
tts = TextToSpeech(name=name,
|
||||
dvm_config=dvm_config,
|
||||
nip89config=nip89config,
|
||||
admin_config=admin_config,
|
||||
options=options)
|
||||
tts.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if not env_path.is_file():
|
||||
with open('.env', 'w') as f:
|
||||
print("Writing new .env file")
|
||||
f.write('')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
main()
|
||||
98
examples/tts_dvm/test_client.py
Normal file
98
examples/tts_dvm/test_client.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import dotenv
|
||||
from nostr_sdk import Keys, Client, Tag, EventBuilder, Filter, HandleNotification, Timestamp, nip04_decrypt
|
||||
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig
|
||||
from nostr_dvm.utils.nostr_utils import send_event, check_and_set_private_key
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
|
||||
|
||||
def nostr_client_test_tts(prompt):
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
|
||||
iTag = Tag.parse(["i", prompt, "text"])
|
||||
paramTag1 = Tag.parse(["param", "language", "en"])
|
||||
|
||||
|
||||
bidTag = Tag.parse(['bid', str(1000 * 1000), str(1000 * 1000)])
|
||||
relaysTag = Tag.parse(['relays', "wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"])
|
||||
alttag = Tag.parse(["alt", "This is a NIP90 DVM AI task to generate TTSt"])
|
||||
event = EventBuilder(EventDefinitions.KIND_NIP90_TEXT_TO_SPEECH, str("Generate an Audio File."),
|
||||
[iTag, paramTag1, bidTag, relaysTag, alttag]).to_event(keys)
|
||||
|
||||
relay_list = ["wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"]
|
||||
|
||||
client = Client(keys)
|
||||
for relay in relay_list:
|
||||
client.add_relay(relay)
|
||||
client.connect()
|
||||
config = DVMConfig
|
||||
send_event(event, client=client, dvm_config=config)
|
||||
return event.as_json()
|
||||
|
||||
def nostr_client():
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
sk = keys.secret_key()
|
||||
pk = keys.public_key()
|
||||
print(f"Nostr Test Client public key: {pk.to_bech32()}, Hex: {pk.to_hex()} ")
|
||||
client = Client(keys)
|
||||
dvmconfig = DVMConfig()
|
||||
for relay in dvmconfig.RELAY_LIST:
|
||||
client.add_relay(relay)
|
||||
client.connect()
|
||||
|
||||
dm_zap_filter = Filter().pubkey(pk).kinds([EventDefinitions.KIND_DM,
|
||||
EventDefinitions.KIND_ZAP]).since(
|
||||
Timestamp.now()) # events to us specific
|
||||
dvm_filter = (Filter().kinds([EventDefinitions.KIND_NIP90_RESULT_TEXT_TO_SPEECH,
|
||||
EventDefinitions.KIND_FEEDBACK]).since(Timestamp.now())) # public events
|
||||
client.subscribe([dm_zap_filter, dvm_filter])
|
||||
|
||||
|
||||
nostr_client_test_tts("Hello, this is a test. Mic check one, two.")
|
||||
print("Sending Job Request")
|
||||
|
||||
|
||||
#nostr_client_test_image_private("a beautiful ostrich watching the sunset")
|
||||
class NotificationHandler(HandleNotification):
|
||||
def handle(self, relay_url, event):
|
||||
print(f"Received new event from {relay_url}: {event.as_json()}")
|
||||
if event.kind() == 7000:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
elif 6000 < event.kind() < 6999:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
print("[Nostr Client]: " + event.content())
|
||||
|
||||
elif event.kind() == 4:
|
||||
dec_text = nip04_decrypt(sk, event.pubkey(), event.content())
|
||||
print("[Nostr Client]: " + f"Received new msg: {dec_text}")
|
||||
|
||||
elif event.kind() == 9735:
|
||||
print("[Nostr Client]: " + f"Received new zap:")
|
||||
print(event.as_json())
|
||||
|
||||
def handle_msg(self, relay_url, msg):
|
||||
return
|
||||
|
||||
client.handle_notifications(NotificationHandler())
|
||||
while True:
|
||||
time.sleep(5.0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
nostr_dvm_thread = Thread(target=nostr_client())
|
||||
nostr_dvm_thread.start()
|
||||
20
main.py
20
main.py
@@ -5,7 +5,8 @@ import dotenv
|
||||
from nostr_dvm.bot import Bot
|
||||
from nostr_dvm.tasks import videogeneration_replicate_svd, imagegeneration_replicate_sdxl, textgeneration_llmlite, \
|
||||
trending_notes_nostrband, discovery_inactive_follows, translation_google, textextraction_pdf, \
|
||||
translation_libretranslate, textextraction_google, convert_media, imagegeneration_openai_dalle
|
||||
translation_libretranslate, textextraction_google, convert_media, imagegeneration_openai_dalle, texttospeech, \
|
||||
imagegeneration_mlx, advanced_search, textextraction_whisper_mlx
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.backend_utils import keep_alive
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
@@ -133,6 +134,19 @@ def playground():
|
||||
ollama = textgeneration_llmlite.build_example("LLM", "llmlite", admin_config)
|
||||
bot_config.SUPPORTED_DVMS.append(ollama)
|
||||
ollama.run()
|
||||
|
||||
tts = texttospeech.build_example("Text To Speech Test", "tts", admin_config)
|
||||
bot_config.SUPPORTED_DVMS.append(tts)
|
||||
tts.run()
|
||||
|
||||
from sys import platform
|
||||
if platform == "darwin":
|
||||
# Test with MLX for OSX M1/M2/M3 chips
|
||||
mlx = imagegeneration_mlx.build_example("SD with MLX", "mlx_sd", admin_config)
|
||||
bot_config.SUPPORTED_DVMS.append(mlx)
|
||||
mlx.run()
|
||||
|
||||
|
||||
# Run the bot
|
||||
Bot(bot_config)
|
||||
# Keep the main function alive for libraries that require it, like openai
|
||||
@@ -141,6 +155,10 @@ def playground():
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if not env_path.is_file():
|
||||
with open('.env', 'w') as f:
|
||||
print("Writing new .env file")
|
||||
f.write('')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
|
||||
@@ -43,9 +43,6 @@ def send_file_to_server(filepath, address):
|
||||
|
||||
return result
|
||||
|
||||
# headers = {'Content-type': 'application/x-www-form-urlencoded'}
|
||||
|
||||
|
||||
"""
|
||||
check_n_server_status(request_form, address)
|
||||
Function that requests the status of the current process with the jobID (we use the Nostr event as jobID).
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
|
||||
from nostr_sdk import PublicKey, Keys, Client, Tag, Event, EventBuilder, Filter, HandleNotification, Timestamp, \
|
||||
init_logger, LogLevel, Options, nip04_encrypt
|
||||
@@ -323,7 +327,8 @@ class DVM:
|
||||
except Exception as e:
|
||||
# Zapping back by error in post-processing is a risk for the DVM because work has been done,
|
||||
# but maybe something with parsing/uploading failed. Try to avoid errors here as good as possible
|
||||
send_job_status_reaction(original_event, "error", content="Error in Post-processing: " + str(e),
|
||||
send_job_status_reaction(original_event, "error",
|
||||
content="Error in Post-processing: " + str(e),
|
||||
dvm_config=self.dvm_config,
|
||||
)
|
||||
if amount > 0 and self.dvm_config.LNBITS_ADMIN_KEY != "":
|
||||
@@ -466,11 +471,30 @@ class DVM:
|
||||
for dvm in self.dvm_config.SUPPORTED_DVMS:
|
||||
try:
|
||||
if task == dvm.TASK:
|
||||
request_form = dvm.create_request_from_nostr_event(job_event, self.client,
|
||||
self.dvm_config)
|
||||
|
||||
request_form = dvm.create_request_from_nostr_event(job_event, self.client, self.dvm_config)
|
||||
|
||||
if dvm_config.USE_OWN_VENV:
|
||||
python_bin = (r'cache/venvs/' + os.path.basename(dvm_config.SCRIPT).split(".py")[0]
|
||||
+ "/bin/python")
|
||||
retcode = subprocess.call([python_bin, dvm_config.SCRIPT,
|
||||
'--request', json.dumps(request_form),
|
||||
'--identifier', dvm_config.IDENTIFIER,
|
||||
'--output', 'output.txt'])
|
||||
print("Finished processing, loading data..")
|
||||
|
||||
with open(os.path.abspath('output.txt')) as f:
|
||||
resultall = f.readlines()
|
||||
result = ""
|
||||
for line in resultall:
|
||||
if line != '\n':
|
||||
result += line
|
||||
os.remove(os.path.abspath('output.txt'))
|
||||
else: #Some components might have issues with running code in otuside venv.
|
||||
# We install locally in these cases for now
|
||||
result = dvm.process(request_form)
|
||||
try:
|
||||
post_processed = dvm.post_process(result, job_event)
|
||||
post_processed = dvm.post_process(str(result), job_event)
|
||||
send_nostr_reply_event(post_processed, job_event.as_json())
|
||||
except Exception as e:
|
||||
send_job_status_reaction(job_event, "error", content=str(e),
|
||||
@@ -495,7 +519,6 @@ class DVM:
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
return
|
||||
|
||||
self.client.handle_notifications(NotificationHandler())
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
from subprocess import run
|
||||
import sys
|
||||
from threading import Thread
|
||||
|
||||
from venv import create
|
||||
from nostr_sdk import Keys
|
||||
|
||||
from nostr_dvm.dvm import DVM
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config
|
||||
from nostr_dvm.utils.nostr_utils import check_and_set_private_key
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.output_utils import post_process_result
|
||||
from nostr_dvm.utils.zap_utils import check_and_set_ln_bits_keys
|
||||
|
||||
|
||||
class DVMTaskInterface:
|
||||
@@ -34,7 +32,7 @@ class DVMTaskInterface:
|
||||
options=None, task=None):
|
||||
self.init(name, dvm_config, admin_config, nip89config, task)
|
||||
self.options = options
|
||||
self.install_dependencies(self.dependencies)
|
||||
self.install_dependencies(dvm_config)
|
||||
|
||||
def init(self, name, dvm_config, admin_config=None, nip89config=None, task=None):
|
||||
self.NAME = name
|
||||
@@ -58,6 +56,27 @@ class DVMTaskInterface:
|
||||
self.dvm_config = dvm_config
|
||||
self.admin_config = admin_config
|
||||
|
||||
def install_dependencies(self, dvm_config):
|
||||
if dvm_config.SCRIPT != "":
|
||||
if self.dvm_config.USE_OWN_VENV:
|
||||
|
||||
dir = r'cache/venvs/' + os.path.basename(dvm_config.SCRIPT).split(".py")[0]
|
||||
if not os.path.isdir(dir):
|
||||
print(dir)
|
||||
create(dir, with_pip=True, upgrade_deps=True)
|
||||
self.dependencies.append(("nostr-dvm", "nostr-dvm"))
|
||||
for (module, package) in self.dependencies:
|
||||
print("Installing Venv Module: " + module)
|
||||
run(["bin/pip", "install", "--force-reinstall", package], cwd=dir)
|
||||
else:
|
||||
for module, package in self.dependencies:
|
||||
if module != "nostr-dvm":
|
||||
try:
|
||||
__import__(module)
|
||||
except ImportError:
|
||||
print("Installing global Module: " + module)
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
||||
|
||||
def run(self):
|
||||
nostr_dvm_thread = Thread(target=self.DVM, args=[self.dvm_config, self.admin_config])
|
||||
nostr_dvm_thread.start()
|
||||
@@ -87,16 +106,6 @@ class DVMTaskInterface:
|
||||
"""Post-process the data and return the result Use default function, if not overwritten"""
|
||||
return post_process_result(result, event)
|
||||
|
||||
def install_dependencies(self, packages):
|
||||
import pip
|
||||
for module, package in packages:
|
||||
try:
|
||||
__import__(module)
|
||||
except ImportError:
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def set_options(request_form):
|
||||
print("Setting options...")
|
||||
@@ -105,3 +114,19 @@ class DVMTaskInterface:
|
||||
opts = json.loads(request_form["options"])
|
||||
print(opts)
|
||||
return dict(opts)
|
||||
|
||||
@staticmethod
|
||||
def process_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--request', dest='request')
|
||||
parser.add_argument('--identifier', dest='identifier')
|
||||
parser.add_argument('--output', dest='output')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
@staticmethod
|
||||
def write_output(result, output):
|
||||
with open(os.path.abspath(output), 'w') as f:
|
||||
f.write(result)
|
||||
# f.close()
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
import json
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
from nostr_sdk import Client, Timestamp, PublicKey, Tag, Keys, Options, SecretKey
|
||||
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.backend_utils import keep_alive
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
@@ -27,9 +23,11 @@ class AdvancedSearch(DVMTaskInterface):
|
||||
TASK: str = "search-content"
|
||||
FIX_COST: float = 0
|
||||
dvm_config: DVMConfig
|
||||
dependencies = [("nostr-dvm", "nostr-dvm")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -177,19 +175,12 @@ def build_example(name, identifier, admin_config):
|
||||
admin_config=admin_config)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = AdvancedSearch(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
|
||||
dvm = build_example("Advanced Nostr Search", "discovery_content_search", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -1,14 +1,10 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
import os
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.backend_utils import keep_alive
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config
|
||||
from nostr_dvm.utils.mediasource_utils import organize_input_media_data
|
||||
from nostr_dvm.utils.output_utils import upload_media_to_hoster
|
||||
|
||||
@@ -30,6 +26,7 @@ class MediaConverter(DVMTaskInterface):
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -92,7 +89,7 @@ def build_example(name, identifier, admin_config):
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
"media_format": {
|
||||
"format": {
|
||||
"required": False,
|
||||
"values": ["video/mp4", "audio/mp3"]
|
||||
}
|
||||
@@ -100,26 +97,18 @@ def build_example(name, identifier, admin_config):
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
|
||||
return MediaConverter(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = MediaConverter(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
|
||||
dvm = build_example("Media Bringer", "media_converter", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -1,15 +1,12 @@
|
||||
import json
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import dotenv
|
||||
from nostr_sdk import Client, Timestamp, PublicKey, Tag, Keys, Options
|
||||
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.backend_utils import keep_alive
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
@@ -33,6 +30,7 @@ class DiscoverInactiveFollows(DVMTaskInterface):
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -198,19 +196,12 @@ def build_example(name, identifier, admin_config):
|
||||
return DiscoverInactiveFollows(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = DiscoverInactiveFollows(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Bygones", "discovery_inactive_follows", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
186
nostr_dvm/tasks/imagegeneration_mlx.py
Normal file
186
nostr_dvm/tasks/imagegeneration_mlx.py
Normal file
@@ -0,0 +1,186 @@
|
||||
import json
|
||||
import os
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.output_utils import upload_media_to_hoster
|
||||
from nostr_dvm.utils.zap_utils import get_price_per_sat
|
||||
|
||||
"""
|
||||
This File contains a Module to generate an Image on replicate and receive results back.
|
||||
|
||||
Accepted Inputs: Prompt (text)
|
||||
Outputs: An url to an Image
|
||||
Params:
|
||||
"""
|
||||
|
||||
|
||||
class ImageGenerationMLX(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
FIX_COST: float = 120
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("mlx", "mlx"),
|
||||
("safetensors", "safetensors"),
|
||||
("huggingface-hub", "huggingface-hub"),
|
||||
("regex", "regex"),
|
||||
("tqdm", "tqdm"),
|
||||
]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "text":
|
||||
return False
|
||||
|
||||
elif tag.as_vec()[0] == 'output':
|
||||
output = tag.as_vec()[1]
|
||||
if (output == "" or
|
||||
not (output == "image/png" or "image/jpg"
|
||||
or output == "image/png;format=url" or output == "image/jpg;format=url")):
|
||||
print("Output format not supported, skipping..")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
prompt = ""
|
||||
width = "1024"
|
||||
height = "1024"
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "size":
|
||||
if len(tag.as_vec()) > 3:
|
||||
width = (tag.as_vec()[2])
|
||||
height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split("x")
|
||||
if len(split) > 1:
|
||||
width = split[0]
|
||||
height = split[1]
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "quality":
|
||||
quality = tag.as_vec()[2]
|
||||
|
||||
options = {
|
||||
"prompt": prompt,
|
||||
"size": width + "x" + height,
|
||||
"number": 1
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
import mlx.core as mx
|
||||
from backends.mlx.stable_diffusion import StableDiffusion
|
||||
options = DVMTaskInterface.set_options(request_form)
|
||||
|
||||
sd = StableDiffusion()
|
||||
cfg_weight = 7.5
|
||||
batchsize = 1
|
||||
n_rows = 1
|
||||
steps = 50
|
||||
n_images = options["number"]
|
||||
|
||||
# Generate the latent vectors using diffusion
|
||||
latents = sd.generate_latents(
|
||||
options["prompt"],
|
||||
n_images=n_images,
|
||||
cfg_weight=cfg_weight,
|
||||
num_steps=steps,
|
||||
negative_text="",
|
||||
)
|
||||
for x_t in tqdm(latents, total=steps):
|
||||
mx.simplify(x_t)
|
||||
mx.simplify(x_t)
|
||||
mx.eval(x_t)
|
||||
|
||||
# Decode them into images
|
||||
decoded = []
|
||||
for i in tqdm(range(0, 1, batchsize)):
|
||||
decoded.append(sd.decode(x_t[i: i + batchsize]))
|
||||
mx.eval(decoded[-1])
|
||||
|
||||
# Arrange them on a grid
|
||||
x = mx.concatenate(decoded, axis=0)
|
||||
x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
|
||||
B, H, W, C = x.shape
|
||||
x = x.reshape(n_rows, B // n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
|
||||
x = x.reshape(n_rows * H, B // n_rows * W, C)
|
||||
x = (x * 255).astype(mx.uint8)
|
||||
|
||||
# Save them to disc
|
||||
image = Image.fromarray(x.__array__())
|
||||
image.save("./outputs/image.jpg")
|
||||
result = upload_media_to_hoster("./outputs/image.jpg")
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
print("Error in Module")
|
||||
raise Exception(e)
|
||||
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config):
|
||||
dvm_config = build_default_config(identifier)
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
profit_in_sats = 10
|
||||
dvm_config.FIX_COST = int(((4.0 / (get_price_per_sat("USD") * 100)) + profit_in_sats))
|
||||
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I use Replicate to run StableDiffusion XL",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
"size": {
|
||||
"required": False,
|
||||
"values": ["1024:1024", "1024x1792", "1792x1024"]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
return ImageGenerationMLX(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = ImageGenerationMLX(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
process_venv()
|
||||
@@ -1,15 +1,13 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.backend_utils import keep_alive
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
@@ -28,10 +26,12 @@ class ImageGenerationDALLE(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
FIX_COST: float = 120
|
||||
dependencies = [("openai", "openai==1.3.5")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("openai", "openai==1.3.5")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -107,6 +107,7 @@ class ImageGenerationDALLE(DVMTaskInterface):
|
||||
n=int(options['number']),
|
||||
)
|
||||
|
||||
|
||||
image_url = response.data[0].url
|
||||
# rehost the result instead of relying on the openai link
|
||||
response = requests.get(image_url)
|
||||
@@ -125,6 +126,7 @@ class ImageGenerationDALLE(DVMTaskInterface):
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config):
|
||||
dvm_config = build_default_config(identifier)
|
||||
dvm_config.USE_OWN_VENV = True
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
profit_in_sats = 10
|
||||
cost_in_cent = 4.0
|
||||
@@ -151,18 +153,17 @@ def build_example(name, identifier, admin_config):
|
||||
return ImageGenerationDALLE(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = ImageGenerationDALLE(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = ""
|
||||
while result == "":
|
||||
result = dvm.process(json.loads(args.request))
|
||||
time.sleep(10)
|
||||
|
||||
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Dall-E 3", "dalle3", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -1,9 +1,6 @@
|
||||
import json
|
||||
import os
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
@@ -29,10 +26,12 @@ class ImageGenerationReplicateSDXL(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
FIX_COST: float = 120
|
||||
dependencies = [("replicate", "replicate==0.21.1")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("replicate", "replicate==0.21.1")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -147,18 +146,12 @@ def build_example(name, identifier, admin_config):
|
||||
admin_config=admin_config)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = ImageGenerationReplicateSDXL(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Stable Diffusion XL", "replicate_sdxl", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -27,10 +27,13 @@ class SpeechToTextGoogle(DVMTaskInterface):
|
||||
TASK: str = "speech-to-text"
|
||||
FIX_COST: float = 10
|
||||
PER_UNIT_COST: float = 0.1
|
||||
dependencies = [("speech_recognition", "SpeechRecognition==3.10.0")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("speech_recognition", "SpeechRecognition==3.10.0")]
|
||||
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
if options is None:
|
||||
options = {}
|
||||
@@ -155,20 +158,13 @@ def build_example(name, identifier, admin_config):
|
||||
|
||||
return SpeechToTextGoogle(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = SpeechToTextGoogle(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Transcriptor", "speech_recognition", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -26,11 +26,13 @@ class TextExtractionPDF(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
||||
TASK: str = "pdf-to-text"
|
||||
FIX_COST: float = 0
|
||||
dependencies = [("pypdf", "pypdf==3.17.1")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("pypdf", "pypdf==3.17.1")]
|
||||
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
|
||||
@@ -116,19 +118,13 @@ def build_example(name, identifier, admin_config):
|
||||
return TextExtractionPDF(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TextExtractionPDF(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("PDF Extractor", "pdf_extractor", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -20,14 +20,16 @@ Outputs: Generated text
|
||||
"""
|
||||
|
||||
|
||||
class TextGenerationOLLAMA(DVMTaskInterface):
|
||||
class TextGenerationLLMLite(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_TEXT
|
||||
TASK: str = "text-to-text"
|
||||
FIX_COST: float = 0
|
||||
dependencies = [("litellm", "litellm==1.12.3")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("litellm", "litellm==1.12.3")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
|
||||
@@ -78,7 +80,8 @@ class TextGenerationOLLAMA(DVMTaskInterface):
|
||||
response = completion(
|
||||
model=options["model"],
|
||||
messages=[{"content": options["prompt"], "role": "user"}],
|
||||
api_base=options["server"]
|
||||
api_base=options["server"],
|
||||
stream=False
|
||||
)
|
||||
print(response.choices[0].message.content)
|
||||
return response.choices[0].message.content
|
||||
@@ -110,34 +113,23 @@ def build_example(name, identifier, admin_config):
|
||||
"about": "I use a LLM connected via OLLAMA",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
"size": {
|
||||
"required": False,
|
||||
"values": ["1024:1024", "1024x1792", "1792x1024"]
|
||||
}
|
||||
}
|
||||
"nip90Params": {}
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
return TextGenerationOLLAMA(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config, options=options)
|
||||
return TextGenerationLLMLite(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TextGenerationLLMLite(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
|
||||
dvm = build_example("LLM", "llmlite", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
138
nostr_dvm/tasks/texttospeech.py
Normal file
138
nostr_dvm/tasks/texttospeech.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import json
|
||||
import os
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||
from pathlib import Path
|
||||
import urllib.request
|
||||
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.output_utils import upload_media_to_hoster
|
||||
|
||||
"""
|
||||
This File contains a Module to generate Audio based on an input and a voice
|
||||
|
||||
Accepted Inputs: Text
|
||||
Outputs: Generated Audiofile
|
||||
"""
|
||||
|
||||
|
||||
class TextToSpeech(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_TEXT_TO_SPEECH
|
||||
TASK: str = "text-to-speech"
|
||||
FIX_COST: float = 200
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("TTS", "TTS==0.22.0")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "text":
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
prompt = "test"
|
||||
if self.options.get("input_file") and self.options.get("input_file") != "":
|
||||
input_file = self.options['input_file']
|
||||
else:
|
||||
if not Path.exists(Path('cache/input.wav')):
|
||||
input_file_url = "https://media.nostr.build/av/de104e3260be636533a56fd4468b905c1eb22b226143a997aa936b011122af8a.wav"
|
||||
urllib.request.urlretrieve(input_file_url, "cache/input.wav")
|
||||
input_file = "cache/input.wav"
|
||||
language = "en"
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
if input_type == "url":
|
||||
input_file = tag.as_vec()[1]
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
param = tag.as_vec()[1]
|
||||
if param == "language": # check for param type
|
||||
language = tag.as_vec()[2]
|
||||
|
||||
options = {
|
||||
"prompt": prompt,
|
||||
"input_wav": input_file,
|
||||
"language": language
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
import torch
|
||||
from TTS.api import TTS
|
||||
options = DVMTaskInterface.set_options(request_form)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
#else "mps" if torch.backends.mps.is_available() \
|
||||
|
||||
print(TTS().list_models())
|
||||
try:
|
||||
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
||||
|
||||
tts.tts_to_file(
|
||||
text=options["prompt"],
|
||||
speaker_wav=options["input_wav"], language=options["language"], file_path="outputs/output.wav")
|
||||
result = upload_media_to_hoster("outputs/output.wav")
|
||||
return result
|
||||
except Exception as e:
|
||||
print("Error in Module: " + str(e))
|
||||
raise Exception(e)
|
||||
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config):
|
||||
dvm_config = build_default_config(identifier)
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
|
||||
#use an alternative local wav file you want to use for cloning
|
||||
options = {'input_file': ""}
|
||||
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I Generate Speech from Text",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {
|
||||
"language": {
|
||||
"required": False,
|
||||
"values": []
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
return TextToSpeech(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config,
|
||||
options=options)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TextToSpeech(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
process_venv()
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
@@ -25,10 +26,12 @@ class TranslationGoogle(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_TRANSLATE_TEXT
|
||||
TASK: str = "translation"
|
||||
FIX_COST: float = 0
|
||||
dependencies = [("translatepy", "translatepy==2.3")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("translatepy", "translatepy==2.3")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -141,18 +144,15 @@ def build_example(name, identifier, admin_config):
|
||||
|
||||
return TranslationGoogle(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config)
|
||||
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TranslationGoogle(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Google Translator", "google_translator", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -13,7 +13,6 @@ from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.nostr_utils import get_referenced_event_by_id, get_event_by_id
|
||||
|
||||
|
||||
"""
|
||||
This File contains a Module to call Libre Translate Services
|
||||
|
||||
@@ -32,6 +31,7 @@ class TranslationLibre(DVMTaskInterface):
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None, task=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options, task)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -125,12 +125,18 @@ def build_example(name, identifier, admin_config):
|
||||
"nip90Params": {
|
||||
"language": {
|
||||
"required": False,
|
||||
"values": ["en", "az", "be", "bg", "bn", "bs", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "eo", "es",
|
||||
"et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "hr", "ht",
|
||||
"hu", "hy", "id", "ig", "is", "it", "he", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky",
|
||||
"la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl",
|
||||
"no", "ny", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so",
|
||||
"sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tl", "tr", "ug", "uk", "ur", "uz",
|
||||
"values": ["en", "az", "be", "bg", "bn", "bs", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "eo",
|
||||
"es",
|
||||
"et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "hr",
|
||||
"ht",
|
||||
"hu", "hy", "id", "ig", "is", "it", "he", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku",
|
||||
"ky",
|
||||
"la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne",
|
||||
"nl",
|
||||
"no", "ny", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn",
|
||||
"so",
|
||||
"sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tl", "tr", "ug", "uk", "ur",
|
||||
"uz",
|
||||
"vi", "xh", "yi", "yo", "zh", "zu"]
|
||||
}
|
||||
}
|
||||
@@ -143,18 +149,12 @@ def build_example(name, identifier, admin_config):
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TranslationLibre(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
dvm = build_example("Libre Translator", "libre_translator", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -29,6 +29,7 @@ class TrendingNotesNostrBand(DVMTaskInterface):
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
@@ -117,20 +118,12 @@ def build_example(name, identifier, admin_config):
|
||||
return TrendingNotesNostrBand(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = TrendingNotesNostrBand(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
|
||||
dvm = build_example("Trending Notes on Nostr.band", "trending_notes_nostrband", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
@@ -30,12 +31,17 @@ class VideoGenerationReplicateSVD(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_VIDEO
|
||||
TASK: str = "image-to-video"
|
||||
FIX_COST: float = 120
|
||||
dependencies = [("replicate", "replicate==0.21.1")]
|
||||
dependencies = [("nostr-dvm", "nostr-dvm"),
|
||||
("replicate", "replicate==0.21.1")]
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
dvm_config.SCRIPT = os.path.abspath(__file__)
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
|
||||
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
@@ -134,20 +140,13 @@ def build_example(name, identifier, admin_config):
|
||||
return VideoGenerationReplicateSVD(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config)
|
||||
|
||||
def process_venv():
|
||||
args = DVMTaskInterface.process_args()
|
||||
dvm_config = build_default_config(args.identifier)
|
||||
dvm = VideoGenerationReplicateSVD(name="", dvm_config=dvm_config, nip89config=NIP89Config(), admin_config=None)
|
||||
result = dvm.process(json.loads(args.request))
|
||||
DVMTaskInterface.write_output(result, args.output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
|
||||
dvm = build_example("Stable Video Diffusion", "replicate_svd", admin_config)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
||||
process_venv()
|
||||
@@ -26,8 +26,10 @@ class User:
|
||||
def create_sql_table(db):
|
||||
try:
|
||||
import os
|
||||
if not os.path.exists(r'.\db'):
|
||||
os.makedirs(r'.\db')
|
||||
if not os.path.exists(r'db'):
|
||||
os.makedirs(r'db')
|
||||
if not os.path.exists(r'outputs'):
|
||||
os.makedirs(r'outputs')
|
||||
con = sqlite3.connect(db)
|
||||
cur = con.cursor()
|
||||
cur.execute(""" CREATE TABLE IF NOT EXISTS users (
|
||||
|
||||
@@ -9,27 +9,29 @@ class EventDefinitions:
|
||||
KIND_NIP94_METADATA = 1063
|
||||
KIND_FEEDBACK = 7000
|
||||
KIND_NIP90_EXTRACT_TEXT = 5000
|
||||
KIND_NIP90_RESULT_EXTRACT_TEXT = 6000
|
||||
KIND_NIP90_RESULT_EXTRACT_TEXT = KIND_NIP90_EXTRACT_TEXT + 1000
|
||||
KIND_NIP90_SUMMARIZE_TEXT = 5001
|
||||
KIND_NIP90_RESULT_SUMMARIZE_TEXT = 6001
|
||||
KIND_NIP90_RESULT_SUMMARIZE_TEXT = KIND_NIP90_SUMMARIZE_TEXT + 1000
|
||||
KIND_NIP90_TRANSLATE_TEXT = 5002
|
||||
KIND_NIP90_RESULT_TRANSLATE_TEXT = 6002
|
||||
KIND_NIP90_RESULT_TRANSLATE_TEXT = KIND_NIP90_TRANSLATE_TEXT + 1000
|
||||
KIND_NIP90_TEXT_TO_SPEECH = 5005
|
||||
KIND_NIP90_RESULT_TEXT_TO_SPEECH = KIND_NIP90_TEXT_TO_SPEECH + 1000
|
||||
KIND_NIP90_GENERATE_TEXT = 5050
|
||||
KIND_NIP90_RESULT_GENERATE_TEXT = 6050
|
||||
KIND_NIP90_RESULT_GENERATE_TEXT = KIND_NIP90_GENERATE_TEXT + 1000
|
||||
KIND_NIP90_GENERATE_IMAGE = 5100
|
||||
KIND_NIP90_RESULT_GENERATE_IMAGE = 6100
|
||||
KIND_NIP90_RESULT_GENERATE_IMAGE = KIND_NIP90_GENERATE_IMAGE + 1000
|
||||
KIND_NIP90_CONVERT_VIDEO = 5200
|
||||
KIND_NIP90_RESULT_CONVERT_VIDEO = 6200
|
||||
KIND_NIP90_RESULT_CONVERT_VIDEO = KIND_NIP90_CONVERT_VIDEO + 1000
|
||||
KIND_NIP90_GENERATE_VIDEO = 5202
|
||||
KIND_NIP90_RESULT_GENERATE_VIDEO = 6202
|
||||
KIND_NIP90_RESULT_GENERATE_VIDEO = KIND_NIP90_GENERATE_VIDEO + 1000
|
||||
KIND_NIP90_CONTENT_DISCOVERY = 5300
|
||||
KIND_NIP90_RESULT_CONTENT_DISCOVERY = 6300
|
||||
KIND_NIP90_RESULT_CONTENT_DISCOVERY = KIND_NIP90_CONTENT_DISCOVERY + 1000
|
||||
KIND_NIP90_PEOPLE_DISCOVERY = 5301
|
||||
KIND_NIP90_RESULT_PEOPLE_DISCOVERY = 6301
|
||||
KIND_NIP90_RESULT_PEOPLE_DISCOVERY = KIND_NIP90_PEOPLE_DISCOVERY + 1000
|
||||
KIND_NIP90_CONTENT_SEARCH = 5302
|
||||
KIND_NIP90_RESULTS_CONTENT_SEARCH = 6302
|
||||
KIND_NIP90_RESULTS_CONTENT_SEARCH = KIND_NIP90_CONTENT_SEARCH + 1000
|
||||
KIND_NIP90_GENERIC = 5999
|
||||
KIND_NIP90_RESULT_GENERIC = 6999
|
||||
KIND_NIP90_RESULT_GENERIC = KIND_NIP90_GENERIC + 1000
|
||||
ANY_RESULT = [KIND_NIP90_RESULT_EXTRACT_TEXT,
|
||||
KIND_NIP90_RESULT_SUMMARIZE_TEXT,
|
||||
KIND_NIP90_RESULT_TRANSLATE_TEXT,
|
||||
|
||||
@@ -23,10 +23,13 @@ class DVMConfig:
|
||||
|
||||
RELAY_TIMEOUT = 3
|
||||
EXTERNAL_POST_PROCESS_TYPE = PostProcessFunctionType.NONE # Leave this on None, except the DVM is external
|
||||
LNBITS_INVOICE_KEY = ''
|
||||
LNBITS_INVOICE_KEY = '' # Will all automatically generated by default, or read from .env
|
||||
LNBITS_ADMIN_KEY = '' # In order to pay invoices, e.g. from the bot to DVMs, or reimburse users.
|
||||
LNBITS_URL = 'https://lnbits.com'
|
||||
LN_ADDRESS = ''
|
||||
SCRIPT = ''
|
||||
IDENTIFIER = ''
|
||||
USE_OWN_VENV = True # Make an own venv for each dvm's process function.Disable if you want to install packages into main venv. Only recommended if you dont want to run dvms with different dependency versions
|
||||
DB: str
|
||||
NEW_USER_BALANCE: int = 0 # Free credits for new users
|
||||
NIP89: NIP89Config
|
||||
@@ -36,6 +39,7 @@ class DVMConfig:
|
||||
def build_default_config(identifier):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.IDENTIFIER = identifier
|
||||
npub = Keys.from_sk_str(dvm_config.PRIVATE_KEY).public_key().to_bech32()
|
||||
invoice_key, admin_key, wallet_id, user_id, lnaddress = check_and_set_ln_bits_keys(identifier, npub)
|
||||
dvm_config.LNBITS_INVOICE_KEY = invoice_key
|
||||
|
||||
@@ -6,6 +6,8 @@ import ffmpegio
|
||||
from decord import AudioReader, cpu
|
||||
import requests
|
||||
from nostr_dvm.utils.nostr_utils import get_event_by_id
|
||||
from nostr_dvm.utils.scrapper.media_scrapper import OvercastDownload, XitterDownload, TiktokDownloadAll, \
|
||||
InstagramDownload, YouTubeDownload
|
||||
|
||||
|
||||
def input_data_file_duration(event, dvm_config, client, start=0, end=0):
|
||||
@@ -18,7 +20,7 @@ def input_data_file_duration(event, dvm_config, client, start=0, end=0):
|
||||
input_type = tag.as_vec()[2]
|
||||
|
||||
if input_type == "text":
|
||||
#For now, ingore length of any text, just return 1.
|
||||
# For now, ignore length of any text, just return 1.
|
||||
return 1
|
||||
|
||||
if input_type == "event": # NIP94 event
|
||||
@@ -52,7 +54,8 @@ def input_data_file_duration(event, dvm_config, client, start=0, end=0):
|
||||
return 1
|
||||
|
||||
|
||||
def organize_input_media_data(input_value, input_type, start, end, dvm_config, client, process=True, media_format="audio/mp3") -> str:
|
||||
def organize_input_media_data(input_value, input_type, start, end, dvm_config, client, process=True,
|
||||
media_format="audio/mp3") -> str:
|
||||
if input_type == "event": # NIP94 event
|
||||
evt = get_event_by_id(input_value, client=client, config=dvm_config)
|
||||
if evt is not None:
|
||||
@@ -209,7 +212,7 @@ def get_overcast(input_value, start, end):
|
||||
print("Found overcast.fm Link.. downloading")
|
||||
start_time = start
|
||||
end_time = end
|
||||
downloadOvercast(input_value, filename)
|
||||
download_overcast(input_value, filename)
|
||||
finaltag = str(input_value).replace("https://overcast.fm/", "").split('/')
|
||||
if start == 0.0:
|
||||
if len(finaltag) > 1:
|
||||
@@ -227,7 +230,7 @@ def get_overcast(input_value, start, end):
|
||||
def get_TikTok(input_value, start, end):
|
||||
filepath = os.path.abspath(os.curdir + r'/outputs/')
|
||||
try:
|
||||
filename = downloadTikTok(input_value, filepath)
|
||||
filename = download_tik_tok(input_value, filepath)
|
||||
print(filename)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
@@ -238,7 +241,7 @@ def get_TikTok(input_value, start, end):
|
||||
def get_Instagram(input_value, start, end):
|
||||
filepath = os.path.abspath(os.curdir + r'/outputs/')
|
||||
try:
|
||||
filename = downloadInstagram(input_value, filepath)
|
||||
filename = download_instagram(input_value, filepath)
|
||||
print(filename)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
@@ -250,7 +253,7 @@ def get_Twitter(input_value, start, end):
|
||||
filepath = os.path.abspath(os.curdir) + r'/outputs/'
|
||||
cleanlink = str(input_value).replace("twitter.com", "x.com")
|
||||
try:
|
||||
filename = downloadTwitter(cleanlink, filepath)
|
||||
filename = download_twitter(cleanlink, filepath)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return "", start, end
|
||||
@@ -259,9 +262,10 @@ def get_Twitter(input_value, start, end):
|
||||
|
||||
def get_youtube(input_value, start, end, audioonly=True):
|
||||
filepath = os.path.abspath(os.curdir) + r'/outputs/'
|
||||
print(filepath)
|
||||
filename = ""
|
||||
try:
|
||||
filename = downloadYouTube(input_value, filepath, audioonly)
|
||||
filename = download_youtube(input_value, filepath, audioonly)
|
||||
|
||||
except Exception as e:
|
||||
print("Youtube " + str(e))
|
||||
@@ -331,31 +335,25 @@ def get_media_link(url) -> (str, str):
|
||||
return None, None
|
||||
|
||||
|
||||
def downloadOvercast(source_url, target_location):
|
||||
from scrapper.media_scrapper import OvercastDownload
|
||||
def download_overcast(source_url, target_location):
|
||||
result = OvercastDownload(source_url, target_location)
|
||||
return result
|
||||
|
||||
|
||||
def downloadTwitter(videourl, path):
|
||||
from scrapper.media_scrapper import XitterDownload
|
||||
def download_twitter(videourl, path):
|
||||
result = XitterDownload(videourl, path + "x.mp4")
|
||||
return result
|
||||
|
||||
|
||||
def downloadTikTok(videourl, path):
|
||||
from scrapper.media_scrapper import TiktokDownloadAll
|
||||
def download_tik_tok(videourl, path):
|
||||
result = TiktokDownloadAll([videourl], path)
|
||||
return result
|
||||
|
||||
|
||||
def downloadInstagram(videourl, path):
|
||||
from scrapper.media_scrapper import InstagramDownload
|
||||
def download_instagram(videourl, path):
|
||||
result = InstagramDownload(videourl, "insta", path)
|
||||
return result
|
||||
|
||||
|
||||
def downloadYouTube(link, path, audioonly=True):
|
||||
from scrapper.media_scrapper import YouTubeDownload
|
||||
result = YouTubeDownload(link, path, audio_only=audioonly)
|
||||
return result
|
||||
def download_youtube(link, path, audioonly=True):
|
||||
return YouTubeDownload(link, path, audio_only=audioonly)
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
from dvm import DVM
|
||||
@@ -18,7 +18,15 @@ def XitterDownload(source_url, target_location):
|
||||
features, variables = request_details["features"], request_details["variables"]
|
||||
|
||||
def get_tokens(tweet_url):
|
||||
html = requests.get(tweet_url)
|
||||
headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101 Firefox/84.0",
|
||||
"Accept": "*/*",
|
||||
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
|
||||
"Accept-Encoding": "gzip, deflate, br",
|
||||
"TE": "trailers",
|
||||
}
|
||||
|
||||
html = requests.get(tweet_url, headers=headers)
|
||||
|
||||
assert (
|
||||
html.status_code == 200
|
||||
@@ -34,7 +42,6 @@ def XitterDownload(source_url, target_location):
|
||||
), f"Failed to find main.js file. If you are using the correct Twitter URL this suggests a bug in the script. Please open a GitHub issue and copy and paste this message. Tweet url: {tweet_url}"
|
||||
|
||||
mainjs_url = mainjs_url[0]
|
||||
|
||||
mainjs = requests.get(mainjs_url)
|
||||
|
||||
assert (
|
||||
@@ -80,9 +87,11 @@ def XitterDownload(source_url, target_location):
|
||||
variables["tweetId"] = tweet_id
|
||||
|
||||
return f"https://twitter.com/i/api/graphql/0hWvDhmW8YQ-S_ib3azIrw/TweetResultByRestId?variables={urllib.parse.quote(json.dumps(variables))}&features={urllib.parse.quote(json.dumps(features))}"
|
||||
# return f"https://api.twitter.com/graphql/ncDeACNGIApPMaqGVuF_rw/TweetResultByRestId?variables={urllib.parse.quote(json.dumps(variables))}&features={urllib.parse.quote(json.dumps(features))}"
|
||||
|
||||
def get_tweet_details(tweet_url, guest_token, bearer_token):
|
||||
tweet_id = re.findall(r"(?<=status/)\d+", tweet_url)
|
||||
|
||||
assert (
|
||||
tweet_id is not None and len(tweet_id) == 1
|
||||
), f"Could not parse tweet id from your url. Make sure you are using the correct url. If you are, then file a GitHub issue and copy and paste this message. Tweet url: {tweet_url}"
|
||||
@@ -172,7 +181,7 @@ def XitterDownload(source_url, target_location):
|
||||
pattern = (
|
||||
r'"expanded_url"\s*:\s*"https://x\.com/[^/]+/status/'
|
||||
+ sid
|
||||
+ '/[^"]+",\s*"id_str"\s*:\s*"\d+",'
|
||||
+ r'/[^"]+",\s*"id_str"\s*:\s*"\d+",'
|
||||
)
|
||||
matches = re.findall(pattern, j)
|
||||
if len(matches) > 0:
|
||||
@@ -240,17 +249,49 @@ def XitterDownload(source_url, target_location):
|
||||
urls = [x["url"] for x in results.values()]
|
||||
urls += container_matches
|
||||
return urls
|
||||
|
||||
return [x["url"] for x in results.values()]
|
||||
|
||||
def extract_mp4_fmp4(j):
|
||||
"""
|
||||
Extract the URL of the MP4 video from the detailed information of the tweet.
|
||||
Returns a list of URLs, tweet IDs, and resolution information (dictionary type)
|
||||
and a list of tweet IDs as return values.
|
||||
"""
|
||||
|
||||
# Empty list to store tweet IDs
|
||||
tweet_id_list = []
|
||||
mp4_info_dict_list = []
|
||||
amplitude_pattern = re.compile(
|
||||
r"(https://video.twimg.com/amplify_video/(\d+)/vid/(avc1/)(\d+x\d+)/[^.]+.mp4\?tag=\d+)"
|
||||
)
|
||||
ext_tw_pattern = re.compile(
|
||||
r"(https://video.twimg.com/ext_tw_video/(\d+)/pu/vid/(avc1/)?(\d+x\d+)/[^.]+.mp4\?tag=\d+)"
|
||||
)
|
||||
tweet_video_pattern = re.compile(r'https://video.twimg.com/tweet_video/[^"]+')
|
||||
container_pattern = re.compile(r'https://video.twimg.com/[^"]*container=fmp4')
|
||||
|
||||
matches = amplitude_pattern.findall(j)
|
||||
matches += ext_tw_pattern.findall(j)
|
||||
container_matches = container_pattern.findall(j)
|
||||
tweet_video_url_list = tweet_video_pattern.findall(j)
|
||||
|
||||
for match in matches:
|
||||
url, tweet_id, _, resolution = match
|
||||
tweet_id_list.append(int(tweet_id))
|
||||
mp4_info_dict_list.append({"resolution": resolution, "url": url})
|
||||
|
||||
tweet_id_list = list(dict.fromkeys(tweet_id_list))
|
||||
|
||||
if len(container_matches) > 0:
|
||||
for url in container_matches:
|
||||
mp4_info_dict_list.append({"url": url})
|
||||
|
||||
return tweet_id_list, mp4_info_dict_list, tweet_video_url_list
|
||||
|
||||
def download_parts(url, output_filename):
|
||||
resp = requests.get(url, stream=True)
|
||||
|
||||
# container begins with / ends with fmp4 and has a resolution in it we want to capture
|
||||
pattern = re.compile(r"(/[^\n]*/(\d+x\d+)/[^\n]*container=fmp4)")
|
||||
|
||||
matches = pattern.findall(resp.text)
|
||||
|
||||
max_res = 0
|
||||
max_res_url = None
|
||||
|
||||
@@ -301,12 +342,9 @@ def XitterDownload(source_url, target_location):
|
||||
|
||||
def repost_check(j, exclude_replies=True):
|
||||
try:
|
||||
# This line extract the index of the first reply
|
||||
reply_index = j.index('"conversationthread-')
|
||||
except ValueError:
|
||||
# If there are no replies we use the enrire response data length
|
||||
reply_index = len(j)
|
||||
# We truncate the response data to exclude replies
|
||||
if exclude_replies:
|
||||
j = j[0:reply_index]
|
||||
|
||||
@@ -360,6 +398,7 @@ def XitterDownload(source_url, target_location):
|
||||
bearer_token, guest_token = get_tokens(tweet_url)
|
||||
resp = get_tweet_details(tweet_url, guest_token, bearer_token)
|
||||
mp4s = extract_mp4s(resp.text, tweet_url, target_all_videos)
|
||||
|
||||
if target_all_videos:
|
||||
video_counter = 1
|
||||
original_urls = repost_check(resp.text, exclude_replies=False)
|
||||
@@ -377,6 +416,7 @@ def XitterDownload(source_url, target_location):
|
||||
download_parts(mp4, output_file)
|
||||
|
||||
else:
|
||||
# use a stream to download the file
|
||||
r = requests.get(mp4, stream=True)
|
||||
with open(output_file, "wb") as f:
|
||||
for chunk in r.iter_content(chunk_size=1024):
|
||||
|
||||
@@ -9,12 +9,12 @@ from Crypto.Cipher import AES
|
||||
from Crypto.Util.Padding import pad
|
||||
from bech32 import bech32_decode, convertbits, bech32_encode
|
||||
from nostr_sdk import nostr_sdk, PublicKey, SecretKey, Event, EventBuilder, Tag, Keys
|
||||
|
||||
from nostr_dvm.utils.nostr_utils import get_event_by_id, check_and_decrypt_own_tags
|
||||
import lnurl
|
||||
from hashlib import sha256
|
||||
import dotenv
|
||||
|
||||
|
||||
# TODO tor connection to lnbits
|
||||
# proxies = {
|
||||
# 'http': 'socks5h://127.0.0.1:9050',
|
||||
@@ -23,6 +23,7 @@ import dotenv
|
||||
|
||||
proxies = {}
|
||||
|
||||
|
||||
def parse_zap_event_tags(zap_event, keys, name, client, config):
|
||||
zapped_event = None
|
||||
invoice_amount = 0
|
||||
@@ -126,10 +127,11 @@ def create_bolt11_lud16(lud16, amount):
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
def create_lnbits_account(name):
|
||||
if os.getenv("LNBITS_ADMIN_ID") is None or os.getenv("LNBITS_ADMIN_ID") == "":
|
||||
print("No admin id set, no wallet created.")
|
||||
return
|
||||
return "","","","", "failed"
|
||||
data = {
|
||||
'admin_id': os.getenv("LNBITS_ADMIN_ID"),
|
||||
'wallet_name': name,
|
||||
@@ -144,9 +146,11 @@ def create_lnbits_account(name):
|
||||
walletjson = json.loads(r.text)
|
||||
print(walletjson)
|
||||
if walletjson.get("wallets"):
|
||||
return walletjson['wallets'][0]['inkey'], walletjson['wallets'][0]['adminkey'], walletjson['wallets'][0]['id'], walletjson['id'], "success"
|
||||
return walletjson['wallets'][0]['inkey'], walletjson['wallets'][0]['adminkey'], walletjson['wallets'][0][
|
||||
'id'], walletjson['id'], "success"
|
||||
except:
|
||||
print("error creating wallet")
|
||||
return "", "", "", "", "failed"
|
||||
|
||||
|
||||
def check_bolt11_ln_bits_is_paid(payment_hash: str, config):
|
||||
@@ -278,9 +282,6 @@ def zap(lud16: str, amount: int, content, zapped_event: Event, keys, dvm_config,
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_price_per_sat(currency):
|
||||
import requests
|
||||
|
||||
@@ -298,13 +299,7 @@ def get_price_per_sat(currency):
|
||||
return price_currency_per_sat
|
||||
|
||||
|
||||
|
||||
def make_ln_address_nostdress(identifier, npub, pin, nostdressdomain):
|
||||
#env_path = Path('.env')
|
||||
#if env_path.is_file():
|
||||
# dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
|
||||
|
||||
print(os.getenv("LNBITS_INVOICE_KEY_" + identifier.upper()))
|
||||
data = {
|
||||
'name': identifier,
|
||||
@@ -317,7 +312,6 @@ def make_ln_address_nostdress(identifier, npub, pin, nostdressdomain):
|
||||
'currentname': " "
|
||||
}
|
||||
|
||||
|
||||
try:
|
||||
url = "https://" + nostdressdomain + "/api/easy/"
|
||||
res = requests.post(url, data=data)
|
||||
@@ -330,8 +324,8 @@ def make_ln_address_nostdress(identifier, npub, pin, nostdressdomain):
|
||||
print(e)
|
||||
return "", ""
|
||||
|
||||
def check_and_set_ln_bits_keys(identifier, npub):
|
||||
|
||||
def check_and_set_ln_bits_keys(identifier, npub):
|
||||
if not os.getenv("LNBITS_INVOICE_KEY_" + identifier.upper()):
|
||||
invoicekey, adminkey, walletid, userid, success = create_lnbits_account(identifier)
|
||||
add_key_to_env_file("LNBITS_INVOICE_KEY_" + identifier.upper(), invoicekey)
|
||||
@@ -341,7 +335,7 @@ def check_and_set_ln_bits_keys(identifier, npub):
|
||||
|
||||
lnaddress = ""
|
||||
pin = ""
|
||||
if os.getenv("NOSTDRESS_DOMAIN"):
|
||||
if os.getenv("NOSTDRESS_DOMAIN") and success != "failed":
|
||||
print(os.getenv("NOSTDRESS_DOMAIN"))
|
||||
lnaddress, pin = make_ln_address_nostdress(identifier, npub, " ", os.getenv("NOSTDRESS_DOMAIN"))
|
||||
add_key_to_env_file("LNADDRESS_" + identifier.upper(), lnaddress)
|
||||
@@ -356,14 +350,8 @@ def check_and_set_ln_bits_keys(identifier, npub):
|
||||
os.getenv("LNADDRESS_" + identifier.upper()))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def add_key_to_env_file(value, oskey):
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
dotenv.set_key(env_path, value, oskey)
|
||||
|
||||
|
||||
|
||||
107
requirements.txt
107
requirements.txt
@@ -1,107 +0,0 @@
|
||||
aiohttp==3.9.1
|
||||
aiosignal==1.3.1
|
||||
anyio==3.7.1
|
||||
appdirs==1.4.4
|
||||
asn1crypto==1.5.1
|
||||
async-timeout==4.0.3
|
||||
attrs==23.1.0
|
||||
base58==2.1.1
|
||||
beautifulsoup4==4.12.2
|
||||
bech32==1.2.0
|
||||
bip32==3.4
|
||||
bitarray==2.8.3
|
||||
bitstring==3.1.9
|
||||
blessed==1.20.0
|
||||
cassidy==0.1.4
|
||||
certifi==2023.7.22
|
||||
cffi==1.16.0
|
||||
charset-normalizer==3.3.2
|
||||
click==8.1.7
|
||||
coincurve==18.0.0
|
||||
cryptography==41.0.4
|
||||
decorator==4.4.2
|
||||
distro==1.8.0
|
||||
ecdsa==0.18.0
|
||||
emoji==2.8.0
|
||||
enumb==0.1.5
|
||||
environs==9.5.0
|
||||
eva-decord==0.6.1
|
||||
exceptiongroup==1.1.3
|
||||
expo==0.1.2
|
||||
fastapi==0.103.0
|
||||
ffmpegio==0.8.5
|
||||
ffmpegio-core==0.8.5
|
||||
filelock==3.13.1
|
||||
frozenlist==1.4.0
|
||||
fsspec==2023.12.1
|
||||
h11==0.14.0
|
||||
httpcore==0.18.0
|
||||
httpx==0.25.1
|
||||
huggingface-hub==0.19.4
|
||||
idna==3.4
|
||||
imageio==2.33.0
|
||||
imageio-ffmpeg==0.4.9
|
||||
importlib-metadata==6.8.0
|
||||
inquirer==3.1.3
|
||||
install==1.3.5
|
||||
instaloader==4.10.1
|
||||
Jinja2==3.1.2
|
||||
litellm==1.12.3
|
||||
lnurl==0.4.1
|
||||
loguru==0.7.2
|
||||
MarkupSafe==2.1.3
|
||||
marshmallow==3.20.1
|
||||
mediatype==0.1.6
|
||||
mnemonic==0.20
|
||||
moviepy==2.0.0.dev2
|
||||
multidict==6.0.4
|
||||
nostr-sdk==0.0.5
|
||||
numpy==1.26.2
|
||||
openai==1.3.5
|
||||
outcome==1.2.0
|
||||
packaging==23.2
|
||||
pandas==2.1.3
|
||||
Pillow==10.1.0
|
||||
pluggy==1.3.0
|
||||
proglog==0.1.10
|
||||
pycparser==2.21
|
||||
pycryptodome==3.19.0
|
||||
pycryptodomex==3.19.0
|
||||
pydantic==1.10.13
|
||||
pydantic_core==2.14.5
|
||||
pypdf==3.17.1
|
||||
python-dateutil==2.8.2
|
||||
python-dotenv==1.0.0
|
||||
python-editor==1.0.4
|
||||
pytube==15.0.0
|
||||
pytz==2023.3.post1
|
||||
PyUpload==0.1.4
|
||||
pyuseragents==1.0.5
|
||||
PyYAML==6.0.1
|
||||
readchar==4.0.5
|
||||
regex==2023.10.3
|
||||
replicate==0.21.1
|
||||
Represent==1.6.0.post0
|
||||
requests==2.31.0
|
||||
requests-toolbelt==1.0.0
|
||||
safeIO==1.2
|
||||
six==1.16.0
|
||||
sniffio==1.3.0
|
||||
socksio==1.0.0
|
||||
soupsieve==2.5
|
||||
SpeechRecognition==3.10.0
|
||||
SQLAlchemy==1.3.24
|
||||
sqlalchemy-aio==0.17.0
|
||||
starlette==0.27.0
|
||||
tiktoken==0.5.2
|
||||
tokenizers==0.15.0
|
||||
tqdm==4.66.1
|
||||
translatepy==2.3
|
||||
typing_extensions==4.8.0
|
||||
tzdata==2023.3
|
||||
urllib3==2.1.0
|
||||
uvicorn==0.23.2
|
||||
wcwidth==0.2.10
|
||||
websocket-client==1.6.4
|
||||
yarl==1.9.4
|
||||
zipp==3.17.0
|
||||
15
setup.py
15
setup.py
@@ -1,8 +1,8 @@
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
VERSION = '0.0.2'
|
||||
DESCRIPTION = 'A framework to build and run NIP90 Data Vending Machines'
|
||||
LONG_DESCRIPTION = ('A framework to build and run NIP90 Data Vending Machines. '
|
||||
VERSION = '0.1.0'
|
||||
DESCRIPTION = 'A framework to build and run Nostr NIP90 Data Vending Machines'
|
||||
LONG_DESCRIPTION = ('A framework to build and run Nostr NIP90 Data Vending Machines. '
|
||||
'This is an early stage release. Interfaces might change/brick')
|
||||
|
||||
# Setting up
|
||||
@@ -13,7 +13,10 @@ setup(
|
||||
author_email="believethehypeonnostr@proton.me",
|
||||
description=DESCRIPTION,
|
||||
long_description=LONG_DESCRIPTION,
|
||||
packages=find_packages(include=['nostr_dvm']),
|
||||
packages=find_packages(include=['nostr_dvm', 'nostr_dvm.interfaces', 'nostr_dvm.tasks',
|
||||
'nostr_dvm.utils', 'nostr_dvm.utils.scrapper',
|
||||
'nostr_dvm.backends', 'nostr_dvm.backends.mlx',
|
||||
'nostr_dvm.backends.mlx.stablediffusion']),
|
||||
install_requires=["nostr-sdk==0.0.5",
|
||||
"bech32==1.2.0",
|
||||
"pycryptodome==3.19.0",
|
||||
@@ -29,7 +32,9 @@ setup(
|
||||
"instaloader==4.10.1",
|
||||
"pytube==15.0.0",
|
||||
"moviepy==2.0.0.dev2",
|
||||
"zipp==3.17.0"
|
||||
"zipp==3.17.0",
|
||||
"urllib3==2.1.0",
|
||||
"typing_extensions>=4.9.0"
|
||||
],
|
||||
keywords=['nostr', 'nip90', 'dvm', 'data vending machine'],
|
||||
url="https://github.com/believethehype/nostrdvm",
|
||||
|
||||
@@ -65,11 +65,35 @@ def nostr_client_test_image(prompt):
|
||||
config = DVMConfig
|
||||
send_event(event, client=client, dvm_config=config)
|
||||
return event.as_json()
|
||||
def nostr_client_test_tts(prompt):
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
|
||||
iTag = Tag.parse(["i", prompt, "text"])
|
||||
paramTag1 = Tag.parse(["param", "language", "en"])
|
||||
|
||||
|
||||
bidTag = Tag.parse(['bid', str(1000 * 1000), str(1000 * 1000)])
|
||||
relaysTag = Tag.parse(['relays', "wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"])
|
||||
alttag = Tag.parse(["alt", "This is a NIP90 DVM AI task to generate TTSt"])
|
||||
event = EventBuilder(EventDefinitions.KIND_NIP90_TEXT_TO_SPEECH, str("Generate an Audio File."),
|
||||
[iTag, paramTag1, bidTag, relaysTag, alttag]).to_event(keys)
|
||||
|
||||
relay_list = ["wss://relay.damus.io", "wss://blastr.f7z.xyz", "wss://relayable.org",
|
||||
"wss://nostr-pub.wellorder.net"]
|
||||
|
||||
client = Client(keys)
|
||||
for relay in relay_list:
|
||||
client.add_relay(relay)
|
||||
client.connect()
|
||||
config = DVMConfig
|
||||
send_event(event, client=client, dvm_config=config)
|
||||
return event.as_json()
|
||||
|
||||
|
||||
def nostr_client_test_image_private(prompt, cashutoken):
|
||||
keys = Keys.from_sk_str(check_and_set_private_key("test_client"))
|
||||
receiver_keys = Keys.from_sk_str(check_and_set_private_key("sketcher"))
|
||||
receiver_keys = Keys.from_sk_str(check_and_set_private_key("replicate_sdxl"))
|
||||
|
||||
|
||||
# TODO more advanced logic, more parsing, params etc, just very basic test functions for now
|
||||
@@ -125,19 +149,20 @@ def nostr_client():
|
||||
client.subscribe([dm_zap_filter, dvm_filter])
|
||||
|
||||
#nostr_client_test_translation("This is the result of the DVM in spanish", "text", "es", 20, 20)
|
||||
nostr_client_test_translation("note1p8cx2dz5ss5gnk7c59zjydcncx6a754c0hsyakjvnw8xwlm5hymsnc23rs", "event", "es", 20,20)
|
||||
#nostr_client_test_translation("note1p8cx2dz5ss5gnk7c59zjydcncx6a754c0hsyakjvnw8xwlm5hymsnc23rs", "event", "es", 20,20)
|
||||
#nostr_client_test_translation("44a0a8b395ade39d46b9d20038b3f0c8a11168e67c442e3ece95e4a1703e2beb", "event", "zh", 20, 20)
|
||||
nostr_client_test_image("a beautiful purple ostrich watching the sunset")
|
||||
#nostr_client_test_tts("Hello, this is a test. Mic check one, two.")
|
||||
|
||||
#nostr_client_test_image("a beautiful purple ostrich watching the sunset")
|
||||
|
||||
#cashutoken = "cashuAeyJ0b2tlbiI6W3sicHJvb2ZzIjpbeyJpZCI6InZxc1VRSVorb0sxOSIsImFtb3VudCI6MSwiQyI6IjAyNWU3ODZhOGFkMmExYTg0N2YxMzNiNGRhM2VhMGIyYWRhZGFkOTRiYzA4M2E2NWJjYjFlOTgwYTE1NGIyMDA2NCIsInNlY3JldCI6InQ1WnphMTZKMGY4UElQZ2FKTEg4V3pPck5rUjhESWhGa291LzVzZFd4S0U9In0seyJpZCI6InZxc1VRSVorb0sxOSIsImFtb3VudCI6NCwiQyI6IjAyOTQxNmZmMTY2MzU5ZWY5ZDc3MDc2MGNjZmY0YzliNTMzMzVmZTA2ZGI5YjBiZDg2Njg5Y2ZiZTIzMjVhYWUwYiIsInNlY3JldCI6IlRPNHB5WE43WlZqaFRQbnBkQ1BldWhncm44UHdUdE5WRUNYWk9MTzZtQXM9In0seyJpZCI6InZxc1VRSVorb0sxOSIsImFtb3VudCI6MTYsIkMiOiIwMmRiZTA3ZjgwYmMzNzE0N2YyMDJkNTZiMGI3ZTIzZTdiNWNkYTBhNmI3Yjg3NDExZWYyOGRiZDg2NjAzNzBlMWIiLCJzZWNyZXQiOiJHYUNIdHhzeG9HM3J2WWNCc0N3V0YxbU1NVXczK0dDN1RKRnVwOHg1cURzPSJ9XSwibWludCI6Imh0dHBzOi8vbG5iaXRzLmJpdGNvaW5maXhlc3RoaXMub3JnL2Nhc2h1L2FwaS92MS9ScDlXZGdKZjlxck51a3M1eVQ2SG5rIn1dfQ=="
|
||||
#nostr_client_test_image_private("a beautiful ostrich watching the sunset", cashutoken )
|
||||
#nostr_client_test_image_private("a beautiful ostrich watching the sunset")
|
||||
class NotificationHandler(HandleNotification):
|
||||
def handle(self, relay_url, event):
|
||||
print(f"Received new event from {relay_url}: {event.as_json()}")
|
||||
if event.kind() == 7000:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
elif event.kind() > 6000 and event.kind() < 6999:
|
||||
elif 6000 < event.kind() < 6999:
|
||||
print("[Nostr Client]: " + event.as_json())
|
||||
print("[Nostr Client]: " + event.content())
|
||||
|
||||
|
||||
Reference in New Issue
Block a user