mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-11-19 03:56:33 +01:00
added dall-e, reworked bot, added nip89config
This commit is contained in:
112
tasks/imagegeneration_openai_dalle.py
Normal file
112
tasks/imagegeneration_openai_dalle.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from threading import Thread
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from dvm import DVM
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.nip89_utils import NIP89Config
|
||||
|
||||
"""
|
||||
This File contains a Module to transform Text input on NOVA-Server and receive results back.
|
||||
|
||||
Accepted Inputs: Prompt (text)
|
||||
Outputs: An url to an Image
|
||||
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
|
||||
-lora # loras (weights on top of models) voxel,
|
||||
"""
|
||||
|
||||
|
||||
class ImageGenerationDALLE(DVMTaskInterface):
|
||||
NAME: str = ""
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
COST: int = 120
|
||||
PK: str
|
||||
DVM = DVM
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, admin_config: AdminConfig = None,
|
||||
options=None):
|
||||
self.NAME = name
|
||||
self.PK = dvm_config.PRIVATE_KEY
|
||||
|
||||
dvm_config.SUPPORTED_DVMS = [self]
|
||||
dvm_config.DB = "db/" + self.NAME + ".db"
|
||||
dvm_config.NIP89 = self.NIP89_announcement(nip89config)
|
||||
self.dvm_config = dvm_config
|
||||
self.admin_config = admin_config
|
||||
self.options = options
|
||||
|
||||
def is_input_supported(self, input_type, input_content):
|
||||
if input_type != "text":
|
||||
return False
|
||||
return True
|
||||
|
||||
def create_request_form_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
prompt = ""
|
||||
width = "1024"
|
||||
height = "1024"
|
||||
model = "dall-e-3"
|
||||
quality = "standard"
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "size":
|
||||
if len(tag.as_vec()) > 3:
|
||||
width = (tag.as_vec()[2])
|
||||
height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split("x")
|
||||
if len(split) > 1:
|
||||
width = split[0]
|
||||
height = split[1]
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "quality":
|
||||
quality = tag.as_vec()[2]
|
||||
|
||||
options = {
|
||||
"prompt": prompt,
|
||||
"size": width + "x" + height,
|
||||
"model": model,
|
||||
"quality": quality,
|
||||
"number": 1
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
options = DVMTaskInterface.set_options(request_form)
|
||||
|
||||
from openai import OpenAI
|
||||
client = OpenAI()
|
||||
print("Job " + request_form['jobID'] + " sent to OpenAI API..")
|
||||
|
||||
response = client.images.generate(
|
||||
model=options['model'],
|
||||
prompt=options['prompt'],
|
||||
size=options['size'],
|
||||
quality=options['quality'],
|
||||
n=int(options['number']),
|
||||
)
|
||||
|
||||
image_url = response.data[0].url
|
||||
return image_url
|
||||
|
||||
except Exception as e:
|
||||
print("Error in Module")
|
||||
raise Exception(e)
|
||||
Reference in New Issue
Block a user