readded nserver modules on this branch

This commit is contained in:
Believethehype
2023-12-07 14:12:51 +01:00
parent d2db32ed73
commit 354463feb0
6 changed files with 1121 additions and 0 deletions

119
backends/nova_server.py Normal file
View File

@@ -0,0 +1,119 @@
import io
import json
import os
import time
import zipfile
import pandas as pd
import requests
import PIL.Image as Image
from utils.output_utils import upload_media_to_hoster
"""
This file contains basic calling functions for ML tasks that are outsourced to nova-server
(https://pypi.org/project/hcai-nova-server/). nova-server is an Open-Source backend that enables running models locally
based on preefined modules (nova-server-modules), by accepting a request form.
Modules are deployed in in separate virtual environments so dependencies won't conflict.
Setup nova-server:
https://hcmlab.github.io/nova-server/docbuild/html/tutorials/introduction.html
"""
"""
send_request_to_nova_server(request_form, address)
Function to send a request_form to the server, containing all the information we parsed from the Nostr event and added
in the module that is calling the server
"""
def send_request_to_nova_server(request_form, address):
print("Sending job to NOVA-Server")
url = ('http://' + address + '/process')
headers = {'Content-type': 'application/x-www-form-urlencoded'}
response = requests.post(url, headers=headers, data=request_form)
return response.text
def send_file_to_nova_server(filepath, address):
print("Sending file to NOVA-Server")
url = ('http://' + address + '/upload')
try:
fp = open(filepath, 'rb')
response = requests.post(url, files={'file': fp})
result = response.content.decode('utf-8')
except Exception as e:
print(e)
print(response.content.decode('utf-8'))
return result
# headers = {'Content-type': 'application/x-www-form-urlencoded'}
"""
check_nova_server_status(request_form, address)
Function that requests the status of the current process with the jobID (we use the Nostr event as jobID).
When the Job is successfully finished we grab the result and depending on the type return the output
We throw an exception on error
"""
def check_nova_server_status(jobID, address) -> str | pd.DataFrame:
headers = {'Content-type': 'application/x-www-form-urlencoded'}
url_status = 'http://' + address + '/job_status'
url_log = 'http://' + address + '/log'
print("Sending Status Request to NOVA-Server")
data = {"jobID": jobID}
status = 0
length = 0
while status != 2 and status != 3:
response_status = requests.post(url_status, headers=headers, data=data)
response_log = requests.post(url_log, headers=headers, data=data)
status = int(json.loads(response_status.text)['status'])
log_content = str(json.loads(response_log.text)['message']).replace("ERROR", "").replace("INFO", "")
log = log_content[length:]
length = len(log_content)
if log != "":
print(log)
# WAITING = 0, RUNNING = 1, FINISHED = 2, ERROR = 3
time.sleep(1.0)
if status == 2:
try:
url_fetch = 'http://' + address + '/fetch_result'
print("Fetching Results from NOVA-Server...")
data = {"jobID": jobID, "delete_after_download": True}
response = requests.post(url_fetch, headers=headers, data=data)
content_type = response.headers['content-type']
print("Content-type: " + str(content_type))
if content_type == "image/jpeg":
image = Image.open(io.BytesIO(response.content))
image.save("./outputs/image.jpg")
result = upload_media_to_hoster("./outputs/image.jpg")
os.remove("./outputs/image.jpg")
return result
elif content_type == 'text/plain; charset=utf-8':
return response.content.decode('utf-8')
elif content_type == "application/x-zip-compressed":
zf = zipfile.ZipFile(io.BytesIO(response.content), "r")
for fileinfo in zf.infolist():
if fileinfo.filename.endswith(".annotation~"):
try:
anno_string = zf.read(fileinfo).decode('utf-8', errors='replace')
columns = ['from', 'to', 'name', 'conf']
result = pd.DataFrame([row.split(';') for row in anno_string.split('\n')],
columns=columns)
return result
except Exception as e:
print(e)
except Exception as e:
print("Couldn't fetch result: " + str(e))
elif status == 3:
return "error"

View File

@@ -0,0 +1,220 @@
import json
import os
from multiprocessing.pool import ThreadPool
from pathlib import Path
import dotenv
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.backend_utils import keep_alive
from utils.dvmconfig import DVMConfig
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
from utils.definitions import EventDefinitions
from utils.nostr_utils import check_and_set_private_key
"""
This File contains a Module to transform Text input on NOVA-Server and receive results back.
Accepted Inputs: Prompt (text)
Outputs: An url to an Image
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
-lora # loras (weights on top of models) voxel,
"""
class ImageGenerationSDXL(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "text-to-image"
FIX_COST: float = 50
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "text":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if (output == "" or
not (output == "image/png" or "image/jpg"
or output == "image/png;format=url" or output == "image/jpg;format=url")):
print("Output format not supported, skipping..")
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
request_form["trainerFilePath"] = 'modules\\stablediffusionxl\\stablediffusionxl.trainer'
prompt = ""
negative_prompt = ""
if self.options.get("default_model") and self.options.get("default_model") != "":
model = self.options['default_model']
else:
model = "stabilityai/stable-diffusion-xl-base-1.0"
ratio_width = "1"
ratio_height = "1"
width = ""
height = ""
if self.options.get("default_lora") and self.options.get("default_lora") != "":
lora = self.options['default_lora']
else:
lora = ""
lora_weight = ""
strength = ""
guidance_scale = ""
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "negative_prompt":
negative_prompt = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora":
lora = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora_weight":
lora_weight = tag.as_vec()[2]
elif tag.as_vec()[1] == "strength":
strength = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "guidance_scale":
guidance_scale = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "ratio":
if len(tag.as_vec()) > 3:
ratio_width = (tag.as_vec()[2])
ratio_height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split(":")
ratio_width = split[0]
ratio_height = split[1]
# if size is set it will overwrite ratio.
elif tag.as_vec()[1] == "size":
if len(tag.as_vec()) > 3:
width = (tag.as_vec()[2])
height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split("x")
if len(split) > 1:
width = split[0]
height = split[1]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
io_input = {
"id": "input_prompt",
"type": "input",
"src": "request:text",
"data": prompt
}
io_negative = {
"id": "negative_prompt",
"type": "input",
"src": "request:text",
"data": negative_prompt
}
io_output = {
"id": "output_image",
"type": "output",
"src": "request:image"
}
request_form['data'] = json.dumps([io_input, io_negative, io_output])
options = {
"model": model,
"ratio": ratio_width + '-' + ratio_height,
"width": width,
"height": height,
"strength": strength,
"guidance_scale": guidance_scale,
"lora": lora,
"lora_weight": lora_weight
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
# Call the process route of NOVA-Server with our request form.
response = send_request_to_nova_server(request_form, self.options['nova_server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to NOVA-server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
print("Wait for results of NOVA-Server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address, default_model="stabilityai/stable-diffusion-xl"
"-base-1.0", default_lora=""):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
dvm_config.LNBITS_INVOICE_KEY = "" # This one will not use Lnbits to create invoices, but rely on zaps
dvm_config.LNBITS_URL = ""
# A module might have options it can be initialized with, here we set a default model, and the nova-server
# address it should use. These parameters can be freely defined in the task component
options = {'default_model': default_model, 'default_lora': default_lora, 'nova_server': server_address}
nip90params = {
"negative_prompt": {
"required": False,
"values": []
},
"ratio": {
"required": False,
"values": ["1:1", "4:3", "16:9", "3:4", "9:16", "10:16"]
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I draw images based on a prompt with a Model called unstable diffusion",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
return ImageGenerationSDXL(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
admin_config.LUD16 = ""
dvm = build_example("Unstable Diffusion", "unstable_diffusion", admin_config, os.getenv("NOVA_SERVER"), "stabilityai/stable-diffusion-xl", "")
dvm.run()
keep_alive()

View File

@@ -0,0 +1,255 @@
import json
import os
from multiprocessing.pool import ThreadPool
from pathlib import Path
import dotenv
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.backend_utils import keep_alive
from utils.dvmconfig import DVMConfig
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
from utils.definitions import EventDefinitions
from utils.nostr_utils import check_and_set_private_key
"""
This File contains a Module to transform Text input on NOVA-Server and receive results back.
Accepted Inputs: Prompt (text)
Outputs: An url to an Image
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
-lora # loras (weights on top of models) voxel,
"""
class ImageGenerationSDXLIMG2IMG(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "image-to-image"
FIX_COST: float = 50
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags):
hasurl = False
hasprompt = False
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type == "url":
hasurl = True
elif input_type == "text":
hasprompt = True #Little optional when lora is set
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if (output == "" or
not (output == "image/png" or "image/jpg"
or output == "image/png;format=url" or output == "image/jpg;format=url")):
print("Output format not supported, skipping..")
return False
if not hasurl:
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
request_form["trainerFilePath"] = r'modules\stablediffusionxl\stablediffusionxl-img2img.trainer'
prompt = ""
negative_prompt = ""
url = ""
if self.options.get("default_model"):
model = self.options['default_model']
else:
model = "stabilityai/stable-diffusion-xl-refiner-1.0"
ratio_width = "1"
ratio_height = "1"
width = ""
height = ""
if self.options.get("default_lora") and self.options.get("default_lora") != "":
lora = self.options['default_lora']
else:
lora = ""
lora_weight = ""
if self.options.get("strength"):
strength = float(self.options['strength'])
else:
strength = 0.8
if self.options.get("guidance_scale"):
guidance_scale = float(self.options['guidance_scale'])
else:
guidance_scale = 11.0
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "negative_prompt":
negative_prompt = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora":
lora = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora_weight":
lora_weight = tag.as_vec()[2]
elif tag.as_vec()[1] == "strength":
strength = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "guidance_scale":
guidance_scale = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "ratio":
if len(tag.as_vec()) > 3:
ratio_width = (tag.as_vec()[2])
ratio_height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split(":")
ratio_width = split[0]
ratio_height = split[1]
# if size is set it will overwrite ratio.
elif tag.as_vec()[1] == "size":
if len(tag.as_vec()) > 3:
width = (tag.as_vec()[2])
height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split("x")
if len(split) > 1:
width = split[0]
height = split[1]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
io_input_image = {
"id": "input_image",
"type": "input",
"src": "url:Image",
"uri": url
}
io_input = {
"id": "input_prompt",
"type": "input",
"src": "request:text",
"data": prompt
}
io_negative = {
"id": "negative_prompt",
"type": "input",
"src": "request:text",
"data": negative_prompt
}
io_output = {
"id": "output_image",
"type": "output",
"src": "request:image"
}
request_form['data'] = json.dumps([io_input_image, io_input, io_negative, io_output])
options = {
"model": model,
"ratio": ratio_width + '-' + ratio_height,
"width": width,
"height": height,
"strength": strength,
"guidance_scale": guidance_scale,
"lora": lora,
"lora_weight": lora_weight,
"n_steps": 30
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
# Call the process route of NOVA-Server with our request form.
response = send_request_to_nova_server(request_form, self.options['nova_server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to NOVA-server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
print("Wait for results of NOVA-Server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address, default_lora="", strength=0.6):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
nip90params = {
"negative_prompt": {
"required": False,
"values": []
},
"lora": {
"required": False,
"values": ["inkpunk", "timburton", "voxel"]
},
"strength": {
"required": False,
"values": []
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
"about": "I convert an image to another image, kinda random for now. ",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
options = {'default_lora': default_lora, 'strength': strength, 'nova_server': server_address}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
return ImageGenerationSDXLIMG2IMG(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
admin_config.LUD16 = ""
dvm = build_example("Image Converter Inkpunk", "image2image", admin_config, os.getenv("NOVA_SERVER"), "", 0.6)
dvm.run()
keep_alive()

164
tasks/imageinterrogator.py Normal file
View File

@@ -0,0 +1,164 @@
import json
import os
from multiprocessing.pool import ThreadPool
from pathlib import Path
import dotenv
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.backend_utils import keep_alive
from utils.dvmconfig import DVMConfig
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
from utils.definitions import EventDefinitions
from utils.nostr_utils import check_and_set_private_key
"""
This File contains a Module to extract a prompt from an image from an url.
Accepted Inputs: link to image (url)
Outputs: An textual description of the image
"""
class ImageInterrogator(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
TASK: str = "image-to-text"
FIX_COST: float = 80
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags):
hasurl = False
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type == "url":
hasurl = True
if not hasurl:
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
request_form["trainerFilePath"] = r'modules\image_interrogator\image_interrogator.trainer'
url = ""
method = "prompt"
mode = "best"
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "method":
method = tag.as_vec()[2]
elif tag.as_vec()[1] == "mode":
mode = tag.as_vec()[2]
io_input_image = {
"id": "input_image",
"type": "input",
"src": "url:Image",
"uri": url
}
io_output = {
"id": "output",
"type": "output",
"src": "request:text"
}
request_form['data'] = json.dumps([io_input_image, io_output])
options = {
"kind": method,
"mode": mode
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
# Call the process route of NOVA-Server with our request form.
response = send_request_to_nova_server(request_form, self.options['nova_server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to NOVA-server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
print("Wait for results of NOVA-Server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
nip90params = {
"method": {
"required": False,
"values": ["prompt", "analysis"]
},
"mode": {
"required": False,
"values": ["best", "classic", "fast", "negative"]
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
"about": "I analyse Images an return a prompt or a prompt analysis",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
options = {'nova_server': server_address}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
return ImageInterrogator(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
admin_config.LUD16 = ""
dvm = build_example("Image Interrogator", "imageinterrogator", admin_config, os.getenv("NOVA_SERVER"))
dvm.run()
keep_alive()

158
tasks/imageupscale.py Normal file
View File

@@ -0,0 +1,158 @@
import json
import os
from multiprocessing.pool import ThreadPool
from pathlib import Path
import dotenv
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.backend_utils import keep_alive
from utils.dvmconfig import DVMConfig
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
from utils.definitions import EventDefinitions
from utils.nostr_utils import check_and_set_private_key
"""
This File contains a Module to upscale an image from an url by factor 2-4
Accepted Inputs: link to image (url)
Outputs: An url to an Image
Params: -upscale 2,3,4
"""
class ImageUpscale(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "image-to-image"
FIX_COST: float = 20
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags):
hasurl = False
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type == "url":
hasurl = True
if not hasurl:
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
request_form["trainerFilePath"] = r'modules\image_upscale\image_upscale_realesrgan.trainer'
url = ""
out_scale = 4
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "upscale":
out_scale = tag.as_vec()[2]
io_input_image = {
"id": "input_image",
"type": "input",
"src": "url:Image",
"uri": url
}
io_output = {
"id": "output_image",
"type": "output",
"src": "request:image"
}
request_form['data'] = json.dumps([io_input_image, io_output])
options = {
"outscale": out_scale,
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
# Call the process route of NOVA-Server with our request form.
response = send_request_to_nova_server(request_form, self.options['nova_server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to NOVA-server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
print("Wait for results of NOVA-Server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
nip90params = {
"upscale": {
"required": False,
"values": ["2", "3", "4"]
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
"about": "I upscale an image using realESRGan up to factor 4 (default is factor 4)",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
options = {'nova_server': server_address}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
return ImageUpscale(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
admin_config.LUD16 = ""
dvm = build_example("Image Upscaler", "imageupscale", admin_config, os.getenv("NOVA_SERVER"))
dvm.run()
keep_alive()

View File

@@ -0,0 +1,205 @@
import json
import os
import time
from multiprocessing.pool import ThreadPool
from pathlib import Path
import dotenv
from backends.nova_server import check_nova_server_status, send_request_to_nova_server, send_file_to_nova_server
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.backend_utils import keep_alive
from utils.dvmconfig import DVMConfig
from utils.mediasource_utils import organize_input_media_data
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
from utils.definitions import EventDefinitions
from utils.nostr_utils import check_and_set_private_key
"""
This File contains a Module to transform A media file input on NOVA-Server and receive results back.
Accepted Inputs: Url to media file (url)
Outputs: Transcribed text
"""
class SpeechToTextWhisperX(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
TASK: str = "speech-to-text"
FIX_COST: float = 10
PER_UNIT_COST: float = 0.1
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "url":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if output == "" or not (output == "text/plain"):
print("Output format not supported, skipping..")
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", ""),
"trainerFilePath": 'modules\\whisperx\\whisperx_transcript.trainer'}
if self.options.get("default_model"):
model = self.options['default_model']
else:
model = "base"
if self.options.get("alignment"):
alignment = self.options['alignment']
else:
alignment = "raw"
url = ""
input_type = "url"
start_time = 0
end_time = 0
media_format = "audio/mp3"
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "alignment":
alignment = tag.as_vec()[2]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
elif tag.as_vec()[1] == "range":
try:
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[2], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
start_time = tag.as_vec()[2]
try:
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[3], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
end_time = float(tag.as_vec()[3])
filepath = organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True, media_format)
path_on_server = send_file_to_nova_server(os.path.realpath(filepath), self.options['nova_server'])
io_input = {
"id": "audio",
"type": "input",
"src": "file:stream",
"uri": path_on_server
}
io_output = {
"id": "transcript",
"type": "output",
"src": "request:annotation:free"
}
request_form['data'] = json.dumps([io_input, io_output])
options = {
"model": model,
"alignment_mode": alignment,
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
# Call the process route of NOVA-Server with our request form.
response = send_request_to_nova_server(request_form, self.options['nova_server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to NOVA-server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
print("Wait for results of NOVA-Server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
# A module might have options it can be initialized with, here we set a default model, and the nova-server
# address it should use. These parameters can be freely defined in the task component
options = {'default_model': "base", 'nova_server': server_address}
nip90params = {
"model": {
"required": False,
"values": ["base", "tiny", "small", "medium", "large-v1", "large-v2", "tiny.en", "base.en", "small.en",
"medium.en"]
},
"alignment": {
"required": False,
"values": ["raw", "segment", "word"]
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I extract text from media files with WhisperX",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
return SpeechToTextWhisperX(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
admin_config.LUD16 = ""
dvm = build_example("Whisperer", "whisperx", admin_config, os.getenv("NOVA_SERVER"))
dvm.run()
keep_alive()