mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-11-30 16:36:29 +01:00
added generate image via nserver, refactor
This commit is contained in:
13
tasks/README.md
Normal file
13
tasks/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# NostrAI Data Vending Machine Tasks
|
||||
|
||||
Here Tasks can be defined. Tasks need to follow the DVMTaskInterface as defined in interfaces.
|
||||
Tasks can either happen locally (especially if they are fast) or they can call an alternative backend.
|
||||
Reusable backend functions can be defined in backends (e.g. API calls)
|
||||
|
||||
Current List of Tasks:
|
||||
|
||||
| Module | Kind | Description | Backend |
|
||||
|---------------------|------|-------------------------------------------|---------------------------|
|
||||
| Translation | 5002 | Translates Inputs to another language | Local, calling Google API |
|
||||
| TextExtractionPDF | 5001 | Extracts Text from a PDF file | Local |
|
||||
| ImageGenerationSDXL | 5100 | Generates an Image with StableDiffusionXL | nova-server |
|
||||
120
tasks/imagegenerationsdxl.py
Normal file
120
tasks/imagegenerationsdxl.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import os
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nip89_utils import NIP89Announcement
|
||||
|
||||
|
||||
"""
|
||||
This File contains a Module to transform Text input on NOVA-Server and receive results back.
|
||||
|
||||
Accepted Inputs: Prompt (text)
|
||||
Outputs: An url to an Image
|
||||
"""
|
||||
|
||||
|
||||
class ImageGenerationSDXL(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
COST: int = 0
|
||||
|
||||
def __init__(self, name, pk):
|
||||
self.NAME = name
|
||||
self.PK = pk
|
||||
|
||||
def NIP89_announcement(self, d_tag, content):
|
||||
nip89 = NIP89Announcement()
|
||||
nip89.kind = self.KIND
|
||||
nip89.pk = self.PK
|
||||
nip89.dtag = d_tag
|
||||
nip89.content = content
|
||||
return nip89
|
||||
|
||||
def is_input_supported(self, input_type, input_content):
|
||||
if input_type != "text":
|
||||
return False
|
||||
return True
|
||||
|
||||
def create_request_form_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_"+ self.NAME.replace(" ", "")}
|
||||
request_form["mode"] = "PROCESS"
|
||||
request_form["trainerFilePath"] = 'modules\\stablediffusionxl\\stablediffusionxl.trainer'
|
||||
|
||||
prompt = ""
|
||||
negative_prompt = ""
|
||||
#model = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
model = "unstable"
|
||||
# models: juggernautXL, dynavisionXL, colossusProjectXL, newrealityXL, unstable
|
||||
ratio_width = "1"
|
||||
ratio_height = "1"
|
||||
width = ""
|
||||
height = ""
|
||||
lora = ""
|
||||
lora_weight = ""
|
||||
strength = ""
|
||||
guidance_scale = ""
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print(tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "negative_prompt":
|
||||
negative_prompt = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora":
|
||||
lora = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora_weight":
|
||||
lora_weight = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "strength":
|
||||
strength = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "guidance_scale":
|
||||
guidance_scale = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "ratio":
|
||||
if len(tag.as_vec()) > 3:
|
||||
ratio_width = (tag.as_vec()[2])
|
||||
ratio_height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split(":")
|
||||
ratio_width = split[0]
|
||||
ratio_height = split[1]
|
||||
#if size is set it will overwrite ratio.
|
||||
elif tag.as_vec()[1] == "size":
|
||||
|
||||
if len(tag.as_vec()) > 3:
|
||||
width = (tag.as_vec()[2])
|
||||
height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split("x")
|
||||
if len(split) > 1:
|
||||
width = split[0]
|
||||
height = split[1]
|
||||
print(width)
|
||||
print(height)
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
|
||||
prompt = prompt.replace(";", ",")
|
||||
request_form['data'] = '[{"id":"input_prompt","type":"input","src":"request:text","data":"' + prompt + '","active":"True"},{"id":"negative_prompt","type":"input","src":"request:text","data":"' + negative_prompt + '","active":"True"},{"id":"output_image","type":"output","src":"request:image","active":"True"}]'
|
||||
request_form["optStr"] = ('model=' + model + ';ratio=' + str(ratio_width) + '-' + str(ratio_height) + ';size=' +
|
||||
str(width) + '-' + str(height) + ';strength=' + str(strength) + ';guidance_scale=' +
|
||||
str(guidance_scale) + ';lora=' + lora + ';lora_weight=' + lora_weight)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
success = send_request_to_nova_server(request_form, os.environ["NOVA_SERVER"])
|
||||
print(success)
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], os.environ["NOVA_SERVER"]))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return str(result)
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
@@ -2,12 +2,16 @@ import os
|
||||
import re
|
||||
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils import env
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nip89_utils import NIP89Announcement
|
||||
from utils.nostr_utils import get_event_by_id, get_referenced_event_by_id
|
||||
from utils.nostr_utils import get_event_by_id
|
||||
|
||||
"""
|
||||
This File contains a Module to extract Text from a PDF file locally on the DVM Machine
|
||||
|
||||
Accepted Inputs: Url to pdf file, Event containing an URL to a PDF file
|
||||
Outputs: Text containing the extracted contents of the PDF file
|
||||
"""
|
||||
class TextExtractionPDF(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
||||
TASK: str = "pdf-to-text"
|
||||
@@ -17,16 +21,16 @@ class TextExtractionPDF(DVMTaskInterface):
|
||||
self.NAME = name
|
||||
self.PK = pk
|
||||
|
||||
def NIP89_announcement(self):
|
||||
def NIP89_announcement(self, d_tag, content):
|
||||
nip89 = NIP89Announcement()
|
||||
nip89.kind = self.KIND
|
||||
nip89.pk = self.PK
|
||||
nip89.dtag = os.getenv(env.TASK_TEXTEXTRACTION_NIP89_DTAG)
|
||||
nip89.content = "{\"name\":\"" + self.NAME + "\",\"image\":\"https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg\",\"about\":\"I extract Text from pdf documents\",\"nip90Params\":{}}"
|
||||
nip89.dtag = d_tag
|
||||
nip89.content = content
|
||||
return nip89
|
||||
|
||||
def is_input_supported(self, input_type, input_content):
|
||||
if input_type != "url":
|
||||
if input_type != "url" and input_type != "event":
|
||||
return False
|
||||
return True
|
||||
|
||||
@@ -45,23 +49,21 @@ class TextExtractionPDF(DVMTaskInterface):
|
||||
|
||||
if input_type == "url":
|
||||
url = input_content
|
||||
# if event contains url to pdf, we checked for a pdf link before
|
||||
elif input_type == "event":
|
||||
evt = get_event_by_id(input_content, config=dvm_config)
|
||||
url = re.search("(?P<url>https?://[^\s]+)", evt.content()).group("url")
|
||||
elif input_type == "job":
|
||||
evt = get_referenced_event_by_id(input_content, [EventDefinitions.KIND_NIP90_RESULT_GENERATE_IMAGE],
|
||||
client, config=dvm_config)
|
||||
|
||||
url = re.search("(?P<url>https?://[^\s]+)", evt.content()).group("url")
|
||||
|
||||
request_form["optStr"] = 'url=' + url
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
options = DVMTaskInterface.setOptions(request_form)
|
||||
from pypdf import PdfReader
|
||||
from pathlib import Path
|
||||
import requests
|
||||
|
||||
options = DVMTaskInterface.setOptions(request_form)
|
||||
|
||||
try:
|
||||
file_path = Path('temp.pdf')
|
||||
response = requests.get(options["url"])
|
||||
@@ -76,4 +78,4 @@ class TextExtractionPDF(DVMTaskInterface):
|
||||
os.remove('temp.pdf')
|
||||
return text
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
raise Exception(e)
|
||||
@@ -1,12 +1,19 @@
|
||||
import os
|
||||
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils import env
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nip89_utils import NIP89Announcement
|
||||
from utils.nostr_utils import get_referenced_event_by_id, get_event_by_id
|
||||
|
||||
|
||||
"""
|
||||
This File contains a Module to call Google Translate Services locally on the DVM Machine
|
||||
|
||||
Accepted Inputs: Text, Events, Jobs (Text Extraction, Summary, Translation)
|
||||
Outputs: Text containing the Translation in the desired language.
|
||||
"""
|
||||
|
||||
|
||||
class Translation(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_TRANSLATE_TEXT
|
||||
TASK: str = "translation"
|
||||
@@ -16,12 +23,12 @@ class Translation(DVMTaskInterface):
|
||||
self.NAME = name
|
||||
self.PK = pk
|
||||
|
||||
def NIP89_announcement(self):
|
||||
def NIP89_announcement(self, d_tag, content):
|
||||
nip89 = NIP89Announcement()
|
||||
nip89.kind = self.KIND
|
||||
nip89.pk = self.PK
|
||||
nip89.dtag = os.getenv(env.TASK_TRANSLATION_NIP89_DTAG)
|
||||
nip89.content = "{\"name\":\"" + self.NAME + "\",\"image\":\"https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg\",\"about\":\"I translate text from given text/event/job, currently using Google Translation Services into language defined in param. \",\"nip90Params\":{\"language\":{\"required\":true,\"values\":[\"af\",\"am\",\"ar\",\"az\",\"be\",\"bg\",\"bn\",\"bs\",\"ca\",\"ceb\",\"co\",\"cs\",\"cy\",\"da\",\"de\",\"el\",\"eo\",\"es\",\"et\",\"eu\",\"fa\",\"fi\",\"fr\",\"fy\",\"ga\",\"gd\",\"gl\",\"gu\",\"ha\",\"haw\",\"hi\",\"hmn\",\"hr\",\"ht\",\"hu\",\"hy\",\"id\",\"ig\",\"is\",\"it\",\"he\",\"ja\",\"jv\",\"ka\",\"kk\",\"km\",\"kn\",\"ko\",\"ku\",\"ky\",\"la\",\"lb\",\"lo\",\"lt\",\"lv\",\"mg\",\"mi\",\"mk\",\"ml\",\"mn\",\"mr\",\"ms\",\"mt\",\"my\",\"ne\",\"nl\",\"no\",\"ny\",\"or\",\"pa\",\"pl\",\"ps\",\"pt\",\"ro\",\"ru\",\"sd\",\"si\",\"sk\",\"sl\",\"sm\",\"sn\",\"so\",\"sq\",\"sr\",\"st\",\"su\",\"sv\",\"sw\",\"ta\",\"te\",\"tg\",\"th\",\"tl\",\"tr\",\"ug\",\"uk\",\"ur\",\"uz\",\"vi\",\"xh\",\"yi\",\"yo\",\"zh\",\"zu\"]}}}"
|
||||
nip89.dtag = d_tag
|
||||
nip89.content = content
|
||||
return nip89
|
||||
|
||||
def is_input_supported(self, input_type, input_content):
|
||||
@@ -65,7 +72,8 @@ class Translation(DVMTaskInterface):
|
||||
if tag.as_vec()[0] == 'i':
|
||||
evt = get_referenced_event_by_id(tag.as_vec()[1],
|
||||
[EventDefinitions.KIND_NIP90_RESULT_EXTRACT_TEXT,
|
||||
EventDefinitions.KIND_NIP90_RESULT_SUMMARIZE_TEXT],
|
||||
EventDefinitions.KIND_NIP90_RESULT_SUMMARIZE_TEXT,
|
||||
EventDefinitions.KIND_NIP90_RESULT_TRANSLATE_TEXT],
|
||||
client,
|
||||
config=dvm_config)
|
||||
text = evt.content()
|
||||
@@ -77,8 +85,9 @@ class Translation(DVMTaskInterface):
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
options = DVMTaskInterface.setOptions(request_form)
|
||||
from translatepy.translators.google import GoogleTranslate
|
||||
|
||||
options = DVMTaskInterface.setOptions(request_form)
|
||||
gtranslate = GoogleTranslate()
|
||||
length = len(options["text"])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user