mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-11-18 14:37:29 +01:00
added google speech-to-text
This commit is contained in:
@@ -6,13 +6,14 @@ Reusable backend functions can be defined in backends (e.g. API calls)
|
||||
|
||||
Current List of Tasks:
|
||||
|
||||
| Module | Kind | Description | Backend |
|
||||
|--------------------------|------|------------------------------------------------|-------------|
|
||||
| TextExtractionPDF | 5000 | Extracts Text from a PDF file | local |
|
||||
| SpeechToTextWhisperX | 5000 | Extracts Speech from Media files | nova-server |
|
||||
| TranslationGoogle | 5002 | Translates Inputs to another language | googleAPI |
|
||||
| TranslationLibre | 5002 | Translates Inputs to another language | libreAPI |
|
||||
| ImageGenerationSDXL | 5100 | Generates an Image with StableDiffusionXL | nova-server |
|
||||
| ImageGenerationDALLE | 5100 | Generates an Image with Dall-E | openAI |
|
||||
| MediaConverter | 5200 | Converts a link of a media file and uploads it | openAI |
|
||||
| DiscoverInactiveFollows | 5301 | Find inactive Nostr users | local |
|
||||
| Module | Kind | Description | Backend |
|
||||
|-------------------------|------|------------------------------------------------|-------------|
|
||||
| TextExtractionPDF | 5000 | Extracts Text from a PDF file | local |
|
||||
| SpeechToTextWhisperX | 5000 | Extracts Speech from Media files | nova-server |
|
||||
| SpeechToTextGoogle | 5000 | Extracts Speech from Media files via Google | googleAPI |
|
||||
| TranslationGoogle | 5002 | Translates Inputs to another language | googleAPI |
|
||||
| TranslationLibre | 5002 | Translates Inputs to another language | libreAPI |
|
||||
| ImageGenerationSDXL | 5100 | Generates an Image with StableDiffusionXL | nova-server |
|
||||
| ImageGenerationDALLE | 5100 | Generates an Image with Dall-E | openAI |
|
||||
| MediaConverter | 5200 | Converts a link of a media file and uploads it | openAI |
|
||||
| DiscoverInactiveFollows | 5301 | Find inactive Nostr users | local |
|
||||
125
tasks/textextraction_google.py
Normal file
125
tasks/textextraction_google.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server, send_file_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.mediasource_utils import organize_input_media_data
|
||||
from utils.nip89_utils import NIP89Config
|
||||
from utils.definitions import EventDefinitions
|
||||
|
||||
"""
|
||||
This File contains a Module to transform a media file input on Google Cloud
|
||||
|
||||
Accepted Inputs: Url to media file (url)
|
||||
Outputs: Transcribed text
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class SpeechToTextGoogle(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
||||
TASK: str = "speech-to-text"
|
||||
FIX_COST: float = 10
|
||||
PER_UNIT_COST: float = 0.1
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
if options is None:
|
||||
options = {}
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "url":
|
||||
return False
|
||||
|
||||
elif tag.as_vec()[0] == 'output':
|
||||
output = tag.as_vec()[1]
|
||||
if output == "" or not (output == "text/plain"):
|
||||
print("Output format not supported, skipping..")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_form_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
|
||||
url = ""
|
||||
input_type = "url"
|
||||
start_time = 0
|
||||
end_time = 0
|
||||
media_format = "audio/wav"
|
||||
language = "en-US"
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
url = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "language":
|
||||
language = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "range":
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
|
||||
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
||||
start_time = float(seconds)
|
||||
except:
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[2], "%M:%S")
|
||||
seconds = t.tm_min * 60 + t.tm_sec
|
||||
start_time = float(seconds)
|
||||
except:
|
||||
start_time = tag.as_vec()[2]
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
|
||||
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
||||
end_time = float(seconds)
|
||||
except:
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[3], "%M:%S")
|
||||
seconds = t.tm_min * 60 + t.tm_sec
|
||||
end_time = float(seconds)
|
||||
except:
|
||||
end_time = float(tag.as_vec()[3])
|
||||
|
||||
filepath = organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True,
|
||||
media_format)
|
||||
options = {
|
||||
"filepath": filepath,
|
||||
"language": language,
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
import speech_recognition as sr
|
||||
if self.options.get("api_key"):
|
||||
api_key = self.options['api_key']
|
||||
else:
|
||||
api_key = None
|
||||
options = DVMTaskInterface.set_options(request_form)
|
||||
# Speech recognition instance
|
||||
asr = sr.Recognizer()
|
||||
with sr.AudioFile(options["filepath"]) as source:
|
||||
audio = asr.record(source) # read the entire audio file
|
||||
|
||||
try:
|
||||
# Use Google Web Speech API to recognize speech from audio data
|
||||
result = asr.recognize_google(audio, language=options["language"], key=api_key)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
# If an error occurs during speech recognition, return False and the type of the exception
|
||||
return "error"
|
||||
|
||||
return result
|
||||
Reference in New Issue
Block a user