mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-07-28 12:03:20 +02:00
updating to latest changes
This commit is contained in:
70
nostr_dvm/backends/mlx/modules/stable_diffusion/clip.py
Normal file
70
nostr_dvm/backends/mlx/modules/stable_diffusion/clip.py
Normal file
@@ -0,0 +1,70 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .config import CLIPTextModelConfig
|
||||
|
||||
|
||||
class CLIPEncoderLayer(nn.Module):
|
||||
"""The transformer encoder layer from CLIP."""
|
||||
|
||||
def __init__(self, model_dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.layer_norm1 = nn.LayerNorm(model_dims)
|
||||
self.layer_norm2 = nn.LayerNorm(model_dims)
|
||||
|
||||
self.attention = nn.MultiHeadAttention(model_dims, num_heads)
|
||||
# Add biases to the attention projections to match CLIP
|
||||
self.attention.query_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.key_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.value_proj.bias = mx.zeros(model_dims)
|
||||
self.attention.out_proj.bias = mx.zeros(model_dims)
|
||||
|
||||
self.linear1 = nn.Linear(model_dims, 4 * model_dims)
|
||||
self.linear2 = nn.Linear(4 * model_dims, model_dims)
|
||||
|
||||
def __call__(self, x, attn_mask=None):
|
||||
y = self.layer_norm1(x)
|
||||
y = self.attention(y, y, y, attn_mask)
|
||||
x = y + x
|
||||
|
||||
y = self.layer_norm2(x)
|
||||
y = self.linear1(y)
|
||||
y = nn.gelu_approx(y)
|
||||
y = self.linear2(y)
|
||||
x = y + x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CLIPTextModel(nn.Module):
|
||||
"""Implements the text encoder transformer from CLIP."""
|
||||
|
||||
def __init__(self, config: CLIPTextModelConfig):
|
||||
super().__init__()
|
||||
|
||||
self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
|
||||
self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
|
||||
self.layers = [
|
||||
CLIPEncoderLayer(config.model_dims, config.num_heads)
|
||||
for i in range(config.num_layers)
|
||||
]
|
||||
self.final_layer_norm = nn.LayerNorm(config.model_dims)
|
||||
|
||||
def __call__(self, x):
|
||||
# Extract some shapes
|
||||
B, N = x.shape
|
||||
|
||||
# Compute the embeddings
|
||||
x = self.token_embedding(x)
|
||||
x = x + self.position_embedding.weight[:N]
|
||||
|
||||
# Compute the features from the transformer
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
|
||||
for l in self.layers:
|
||||
x = l(x, mask)
|
||||
|
||||
# Apply the final layernorm and return
|
||||
return self.final_layer_norm(x)
|
Reference in New Issue
Block a user