nostrdvm/nostr_dvm/tasks/imagegeneration_sdxl.py

203 lines
8.1 KiB
Python

import json
import os
from multiprocessing.pool import ThreadPool
from nostr_sdk import Kind
from nostr_dvm.backends.discover.utils import check_server_status, send_request_to_server
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
from nostr_dvm.utils.nip88_utils import NIP88Config
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
"""
This File contains a module to transform Text input on n-server and receive results back.
Accepted Inputs: Prompt (text)
Outputs: An url to an Image
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
-lora # loras (weights on top of models) voxel,
"""
class ImageGenerationSDXL(DVMTaskInterface):
KIND: Kind = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "text-to-image"
FIX_COST: float = 50
async def init_dvm(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None,
admin_config: AdminConfig = None, options=None):
dvm_config.SCRIPT = os.path.abspath(__file__)
async def is_input_supported(self, tags, client=None, dvm_config=None):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "text":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if (output == "" or
not (output == "image/png" or "image/jpg"
or output == "image/png;format=url" or output == "image/jpg;format=url")):
print("Output format not supported, skipping..")
return False
return True
async def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
request_form["trainerFilePath"] = r'modules\stablediffusionxl\stablediffusionxl.trainer'
prompt = ""
negative_prompt = ""
if self.options.get("default_model") and self.options.get("default_model") != "":
model = self.options['default_model']
else:
model = "stabilityai/stable-diffusion-xl-base-1.0"
ratio_width = "1"
ratio_height = "1"
width = ""
height = ""
if self.options.get("default_lora") and self.options.get("default_lora") != "":
lora = self.options['default_lora']
else:
lora = ""
lora_weight = ""
strength = ""
guidance_scale = ""
for tag in event.tags().to_vec():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "negative_prompt":
negative_prompt = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora":
lora = tag.as_vec()[2]
elif tag.as_vec()[1] == "lora_weight":
lora_weight = tag.as_vec()[2]
elif tag.as_vec()[1] == "strength":
strength = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "guidance_scale":
guidance_scale = float(tag.as_vec()[2])
elif tag.as_vec()[1] == "ratio":
if len(tag.as_vec()) > 3:
ratio_width = (tag.as_vec()[2])
ratio_height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split(":")
ratio_width = split[0]
ratio_height = split[1]
# if size is set it will overwrite ratio.
elif tag.as_vec()[1] == "size":
if len(tag.as_vec()) > 3:
width = (tag.as_vec()[2])
height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split("x")
if len(split) > 1:
width = split[0]
height = split[1]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
io_input = {
"id": "input_prompt",
"type": "input",
"src": "request:text",
"data": prompt
}
io_negative = {
"id": "negative_prompt",
"type": "input",
"src": "request:text",
"data": negative_prompt
}
io_output = {
"id": "output_image",
"type": "output",
"src": "request:image"
}
request_form['data'] = json.dumps([io_input, io_negative, io_output])
options = {
"model": model,
"ratio": ratio_width + '-' + ratio_height,
"width": width,
"height": height,
"strength": strength,
"guidance_scale": guidance_scale,
"lora": lora,
"lora_weight": lora_weight
}
request_form['options'] = json.dumps(options)
return request_form
async def process(self, request_form):
try:
# Call the process route of n-server with our request form.
response = send_request_to_server(request_form, self.options['server'])
if bool(json.loads(response)['success']):
print("Job " + request_form['jobID'] + " sent to server")
pool = ThreadPool(processes=1)
thread = pool.apply_async(check_server_status, (request_form['jobID'], self.options['server']))
print("Wait for results of server...")
result = thread.get()
return result
except Exception as e:
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config, server_address, default_model="stabilityai/stable-diffusion-xl"
"-base-1.0", default_lora=""):
dvm_config = build_default_config(identifier)
dvm_config.USE_OWN_VENV = False
admin_config.LUD16 = dvm_config.LN_ADDRESS
# A module might have options it can be initialized with, here we set a default model, and the server
# address it should use. These parameters can be freely defined in the task component
options = {'default_model': default_model, 'default_lora': default_lora, 'server': server_address}
nip89info = {
"name": name,
"picture": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I draw images based on a prompt with a Model called unstable diffusion",
"supportsEncryption": True,
"acceptsNutZaps": dvm_config.ENABLE_NUTZAP,
"nip90Params": {
"negative_prompt": {
"required": False,
"values": []
},
"ratio": {
"required": False,
"values": ["1:1", "4:3", "16:9", "3:4", "9:16", "10:16"]
}
}
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["picture"])
nip89config.CONTENT = json.dumps(nip89info)
return ImageGenerationSDXL(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
process_venv(ImageGenerationSDXL)