nostrdvm/nostr_dvm/tasks/textextraction_google.py

161 lines
6.4 KiB
Python

import json
import os
import time
from nostr_sdk import Kind
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
from nostr_dvm.utils.mediasource_utils import organize_input_media_data
from nostr_dvm.utils.nip88_utils import NIP88Config
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
"""
This File contains a Module to extract text form a media file input on Google Cloud
Accepted Inputs: Url to media file (url)
Outputs: Transcribed text
"""
class SpeechToTextGoogle(DVMTaskInterface):
KIND: Kind = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
TASK: str = "speech-to-text"
FIX_COST: float = 10
PER_UNIT_COST: float = 0.1
dependencies = [("nostr-dvm", "nostr-dvm"),
("speech_recognition", "SpeechRecognition==3.10.0")]
async def init_dvm(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None,
admin_config: AdminConfig = None, options=None):
dvm_config.SCRIPT = os.path.abspath(__file__)
async def is_input_supported(self, tags, client=None, dvm_config=None):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "url":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if output == "" or not (output == "text/plain"):
print("Output format not supported, skipping..")
return False
return True
async def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
url = ""
input_type = "url"
start_time = 0
end_time = 0
media_format = "audio/wav"
language = "en-US"
for tag in event.tags().to_vec():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "language":
language = tag.as_vec()[2]
elif tag.as_vec()[1] == "range":
try:
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[2], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
start_time = tag.as_vec()[2]
try:
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[3], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
end_time = float(tag.as_vec()[3])
filepath = await organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True,
media_format)
options = {
"filepath": filepath,
"language": language,
}
request_form['options'] = json.dumps(options)
return request_form
async def process(self, request_form):
import speech_recognition as sr
if self.options.get("api_key"):
api_key = self.options['api_key']
else:
api_key = None
options = self.set_options(request_form)
# Speech recognition instance
asr = sr.Recognizer()
with sr.AudioFile(options["filepath"]) as source:
audio = asr.record(source) # read the entire audio file
try:
# Use Google Web Speech API to recognize speech from audio data
result = asr.recognize_google(audio, language=options["language"], key=api_key)
except Exception as e:
print(e)
# If an error occurs during speech recognition, return False and the type of the exception
return "error"
return result
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config):
dvm_config = build_default_config(identifier)
admin_config.LUD16 = dvm_config.LN_ADDRESS
options = {'api_key': None}
# A module might have options it can be initialized with, here we set a default model, and the nova-server
# address it should use. These parameters can be freely defined in the task component
nip89info = {
"name": name,
"picture": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I extract text from media files with the Google API. I understand English by default",
"supportsEncryption": True,
"acceptsNutZaps": dvm_config.ENABLE_NUTZAP,
"nip90Params": {
"language": {
"required": False,
"values": ["en-US"]
}
}
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["picture"])
nip89config.CONTENT = json.dumps(nip89info)
return SpeechToTextGoogle(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
process_venv(SpeechToTextGoogle)