mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-03-28 10:31:42 +01:00
229 lines
8.6 KiB
Python
229 lines
8.6 KiB
Python
import json
|
|
from multiprocessing.pool import ThreadPool
|
|
|
|
from nostr_dvm.backends.nova_server.utils import check_server_status, send_request_to_server
|
|
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
|
|
from nostr_dvm.utils.admin_utils import AdminConfig
|
|
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
|
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
|
from nostr_dvm.utils.definitions import EventDefinitions
|
|
|
|
"""
|
|
This File contains a Module to transform Image (and Text) input on N-server and receive results back.
|
|
|
|
Accepted Inputs: Prompt (text)
|
|
Outputs: An url to an Image
|
|
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
|
|
-lora # loras (weights on top of models) voxel,
|
|
"""
|
|
|
|
|
|
class ImageGenerationSDXLIMG2IMG(DVMTaskInterface):
|
|
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
|
TASK: str = "image-to-image"
|
|
FIX_COST: float = 70
|
|
|
|
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
|
admin_config: AdminConfig = None, options=None):
|
|
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
|
|
|
def is_input_supported(self, tags, client=None, dvm_config=None):
|
|
hasurl = False
|
|
hasprompt = False
|
|
for tag in tags:
|
|
if tag.as_vec()[0] == 'i':
|
|
input_value = tag.as_vec()[1]
|
|
input_type = tag.as_vec()[2]
|
|
if input_type == "url":
|
|
hasurl = True
|
|
elif input_type == "text":
|
|
hasprompt = True # Little optional when lora is set
|
|
|
|
elif tag.as_vec()[0] == 'output':
|
|
output = tag.as_vec()[1]
|
|
if (output == "" or
|
|
not (output == "image/png" or "image/jpg"
|
|
or output == "image/png;format=url" or output == "image/jpg;format=url")):
|
|
print("Output format not supported, skipping..")
|
|
return False
|
|
|
|
if not hasurl:
|
|
return False
|
|
|
|
return True
|
|
|
|
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
|
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
|
request_form["trainerFilePath"] = r'modules\stablediffusionxl\stablediffusionxl-img2img.trainer'
|
|
|
|
prompt = ""
|
|
negative_prompt = ""
|
|
url = ""
|
|
if self.options.get("default_model"):
|
|
model = self.options['default_model']
|
|
else:
|
|
model = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
|
|
|
ratio_width = "1"
|
|
ratio_height = "1"
|
|
width = ""
|
|
height = ""
|
|
|
|
if self.options.get("default_lora") and self.options.get("default_lora") != "":
|
|
lora = self.options['default_lora']
|
|
else:
|
|
lora = ""
|
|
|
|
lora_weight = ""
|
|
if self.options.get("strength"):
|
|
strength = float(self.options['strength'])
|
|
else:
|
|
strength = 0.8
|
|
if self.options.get("guidance_scale"):
|
|
guidance_scale = float(self.options['guidance_scale'])
|
|
else:
|
|
guidance_scale = 11.0
|
|
for tag in event.tags():
|
|
if tag.as_vec()[0] == 'i':
|
|
input_type = tag.as_vec()[2]
|
|
if input_type == "text":
|
|
prompt = tag.as_vec()[1]
|
|
elif input_type == "url":
|
|
url = str(tag.as_vec()[1]).split('#')[0]
|
|
|
|
|
|
elif tag.as_vec()[0] == 'param':
|
|
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
|
if tag.as_vec()[1] == "negative_prompt":
|
|
negative_prompt = tag.as_vec()[2]
|
|
elif tag.as_vec()[1] == "lora":
|
|
lora = tag.as_vec()[2]
|
|
elif tag.as_vec()[1] == "lora_weight":
|
|
lora_weight = tag.as_vec()[2]
|
|
elif tag.as_vec()[1] == "strength":
|
|
strength = float(tag.as_vec()[2])
|
|
elif tag.as_vec()[1] == "guidance_scale":
|
|
guidance_scale = float(tag.as_vec()[2])
|
|
elif tag.as_vec()[1] == "ratio":
|
|
if len(tag.as_vec()) > 3:
|
|
ratio_width = (tag.as_vec()[2])
|
|
ratio_height = (tag.as_vec()[3])
|
|
elif len(tag.as_vec()) == 3:
|
|
split = tag.as_vec()[2].split(":")
|
|
ratio_width = split[0]
|
|
ratio_height = split[1]
|
|
# if size is set it will overwrite ratio.
|
|
elif tag.as_vec()[1] == "size":
|
|
if len(tag.as_vec()) > 3:
|
|
width = (tag.as_vec()[2])
|
|
height = (tag.as_vec()[3])
|
|
elif len(tag.as_vec()) == 3:
|
|
split = tag.as_vec()[2].split("x")
|
|
if len(split) > 1:
|
|
width = split[0]
|
|
height = split[1]
|
|
elif tag.as_vec()[1] == "model":
|
|
model = tag.as_vec()[2]
|
|
|
|
io_input_image = {
|
|
"id": "input_image",
|
|
"type": "input",
|
|
"src": "url:Image",
|
|
"uri": url
|
|
}
|
|
io_input = {
|
|
"id": "input_prompt",
|
|
"type": "input",
|
|
"src": "request:text",
|
|
"data": prompt
|
|
}
|
|
io_negative = {
|
|
"id": "negative_prompt",
|
|
"type": "input",
|
|
"src": "request:text",
|
|
"data": negative_prompt
|
|
}
|
|
io_output = {
|
|
"id": "output_image",
|
|
"type": "output",
|
|
"src": "request:image"
|
|
}
|
|
|
|
request_form['data'] = json.dumps([io_input_image, io_input, io_negative, io_output])
|
|
|
|
options = {
|
|
"model": model,
|
|
"ratio": ratio_width + '-' + ratio_height,
|
|
"width": width,
|
|
"height": height,
|
|
"strength": strength,
|
|
"guidance_scale": guidance_scale,
|
|
"lora": lora,
|
|
"lora_weight": lora_weight,
|
|
"n_steps": 30
|
|
}
|
|
request_form['options'] = json.dumps(options)
|
|
|
|
return request_form
|
|
|
|
def process(self, request_form):
|
|
try:
|
|
# Call the process route of NOVA-Server with our request form.
|
|
response = send_request_to_server(request_form, self.options['server'])
|
|
if bool(json.loads(response)['success']):
|
|
print("Job " + request_form['jobID'] + " sent to server")
|
|
|
|
pool = ThreadPool(processes=1)
|
|
thread = pool.apply_async(check_server_status, (request_form['jobID'], self.options['server']))
|
|
print("Wait for results of server...")
|
|
result = thread.get()
|
|
return result
|
|
|
|
except Exception as e:
|
|
raise Exception(e)
|
|
|
|
|
|
# We build an example here that we can call by either calling this file directly from the main directory,
|
|
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
|
# playground or elsewhere
|
|
def build_example(name, identifier, admin_config, server_address, default_lora="", strength=0.6):
|
|
dvm_config = build_default_config(identifier)
|
|
dvm_config.USE_OWN_VENV = False
|
|
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
|
|
|
nip89info = {
|
|
"name": name,
|
|
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
|
|
"about": "I convert an image to another image, kinda random for now. ",
|
|
"encryptionSupported": True,
|
|
"cashuAccepted": True,
|
|
"nip90Params": {
|
|
"negative_prompt": {
|
|
"required": False,
|
|
"values": []
|
|
},
|
|
"lora": {
|
|
"required": False,
|
|
"values": ["inkpunk", "timburton", "voxel"]
|
|
},
|
|
"strength": {
|
|
"required": False,
|
|
"values": []
|
|
}
|
|
}
|
|
}
|
|
|
|
# A module might have options it can be initialized with, here we set a default model, lora and the server
|
|
options = {'default_lora': default_lora, 'strength': strength, 'server': server_address}
|
|
|
|
nip89config = NIP89Config()
|
|
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
|
nip89config.CONTENT = json.dumps(nip89info)
|
|
|
|
return ImageGenerationSDXLIMG2IMG(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
|
admin_config=admin_config, options=options)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
process_venv(ImageGenerationSDXLIMG2IMG)
|