mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-03-27 10:01:44 +01:00
184 lines
7.3 KiB
Python
184 lines
7.3 KiB
Python
import json
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import dotenv
|
|
|
|
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
|
|
from nostr_dvm.utils.admin_utils import AdminConfig
|
|
from nostr_dvm.utils.backend_utils import keep_alive
|
|
from nostr_dvm.utils.dvmconfig import DVMConfig
|
|
from nostr_dvm.utils.mediasource_utils import organize_input_media_data
|
|
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
|
from nostr_dvm.utils.definitions import EventDefinitions
|
|
from nostr_dvm.utils.nostr_utils import check_and_set_private_key
|
|
from nostr_dvm.utils.zap_utils import check_and_set_ln_bits_keys
|
|
from nostr_sdk import Keys
|
|
|
|
"""
|
|
This File contains a Module to transform a media file input on Google Cloud
|
|
|
|
Accepted Inputs: Url to media file (url)
|
|
Outputs: Transcribed text
|
|
|
|
"""
|
|
|
|
|
|
class SpeechToTextGoogle(DVMTaskInterface):
|
|
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
|
TASK: str = "speech-to-text"
|
|
FIX_COST: float = 10
|
|
PER_UNIT_COST: float = 0.1
|
|
|
|
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
|
admin_config: AdminConfig = None, options=None):
|
|
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
|
if options is None:
|
|
options = {}
|
|
|
|
def is_input_supported(self, tags):
|
|
for tag in tags:
|
|
if tag.as_vec()[0] == 'i':
|
|
input_value = tag.as_vec()[1]
|
|
input_type = tag.as_vec()[2]
|
|
if input_type != "url":
|
|
return False
|
|
|
|
elif tag.as_vec()[0] == 'output':
|
|
output = tag.as_vec()[1]
|
|
if output == "" or not (output == "text/plain"):
|
|
print("Output format not supported, skipping..")
|
|
return False
|
|
|
|
return True
|
|
|
|
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
|
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
|
|
|
url = ""
|
|
input_type = "url"
|
|
start_time = 0
|
|
end_time = 0
|
|
media_format = "audio/wav"
|
|
language = "en-US"
|
|
|
|
for tag in event.tags():
|
|
if tag.as_vec()[0] == 'i':
|
|
input_type = tag.as_vec()[2]
|
|
if input_type == "url":
|
|
url = tag.as_vec()[1]
|
|
|
|
elif tag.as_vec()[0] == 'param':
|
|
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
|
if tag.as_vec()[1] == "language":
|
|
language = tag.as_vec()[2]
|
|
elif tag.as_vec()[1] == "range":
|
|
try:
|
|
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
|
|
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
|
start_time = float(seconds)
|
|
except:
|
|
try:
|
|
t = time.strptime(tag.as_vec()[2], "%M:%S")
|
|
seconds = t.tm_min * 60 + t.tm_sec
|
|
start_time = float(seconds)
|
|
except:
|
|
start_time = tag.as_vec()[2]
|
|
try:
|
|
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
|
|
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
|
end_time = float(seconds)
|
|
except:
|
|
try:
|
|
t = time.strptime(tag.as_vec()[3], "%M:%S")
|
|
seconds = t.tm_min * 60 + t.tm_sec
|
|
end_time = float(seconds)
|
|
except:
|
|
end_time = float(tag.as_vec()[3])
|
|
|
|
filepath = organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True,
|
|
media_format)
|
|
options = {
|
|
"filepath": filepath,
|
|
"language": language,
|
|
}
|
|
request_form['options'] = json.dumps(options)
|
|
return request_form
|
|
|
|
def process(self, request_form):
|
|
import speech_recognition as sr
|
|
if self.options.get("api_key"):
|
|
api_key = self.options['api_key']
|
|
else:
|
|
api_key = None
|
|
options = DVMTaskInterface.set_options(request_form)
|
|
# Speech recognition instance
|
|
asr = sr.Recognizer()
|
|
with sr.AudioFile(options["filepath"]) as source:
|
|
audio = asr.record(source) # read the entire audio file
|
|
|
|
try:
|
|
# Use Google Web Speech API to recognize speech from audio data
|
|
result = asr.recognize_google(audio, language=options["language"], key=api_key)
|
|
except Exception as e:
|
|
print(e)
|
|
# If an error occurs during speech recognition, return False and the type of the exception
|
|
return "error"
|
|
|
|
return result
|
|
|
|
# We build an example here that we can call by either calling this file directly from the main directory,
|
|
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
|
# playground or elsewhere
|
|
def build_example(name, identifier, admin_config):
|
|
dvm_config = DVMConfig()
|
|
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
|
npub = Keys.from_sk_str(dvm_config.PRIVATE_KEY).public_key().to_bech32()
|
|
invoice_key, admin_key, wallet_id, user_id, lnaddress = check_and_set_ln_bits_keys(identifier, npub)
|
|
dvm_config.LNBITS_INVOICE_KEY = invoice_key
|
|
dvm_config.LNBITS_ADMIN_KEY = admin_key # The dvm might pay failed jobs back
|
|
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
|
admin_config.LUD16 = lnaddress
|
|
options = {'api_key': None}
|
|
# A module might have options it can be initialized with, here we set a default model, and the nova-server
|
|
# address it should use. These parameters can be freely defined in the task component
|
|
|
|
nip90params = {
|
|
"language": {
|
|
"required": False,
|
|
"values": ["en-US"]
|
|
}
|
|
}
|
|
nip89info = {
|
|
"name": name,
|
|
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
|
"about": "I extract text from media files with the Google API. I understand English by default",
|
|
"encryptionSupported": True,
|
|
"cashuAccepted": True,
|
|
"nip90Params": nip90params
|
|
}
|
|
nip89config = NIP89Config()
|
|
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
|
nip89info["image"])
|
|
nip89config.CONTENT = json.dumps(nip89info)
|
|
return SpeechToTextGoogle(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
|
admin_config=admin_config, options=options)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
env_path = Path('.env')
|
|
if env_path.is_file():
|
|
print(f'loading environment from {env_path.resolve()}')
|
|
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
|
else:
|
|
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
|
|
|
admin_config = AdminConfig()
|
|
admin_config.REBROADCAST_NIP89 = False
|
|
admin_config.UPDATE_PROFILE = False
|
|
dvm = build_example("Transcriptor", "speech_recognition", admin_config)
|
|
dvm.run()
|
|
|
|
keep_alive()
|