nostrdvm/nostr_dvm/tasks/textextraction_google.py
2023-12-13 20:00:03 +01:00

184 lines
7.3 KiB
Python

import json
import os
import time
from pathlib import Path
import dotenv
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.backend_utils import keep_alive
from nostr_dvm.utils.dvmconfig import DVMConfig
from nostr_dvm.utils.mediasource_utils import organize_input_media_data
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.nostr_utils import check_and_set_private_key
from nostr_dvm.utils.zap_utils import check_and_set_ln_bits_keys
from nostr_sdk import Keys
"""
This File contains a Module to transform a media file input on Google Cloud
Accepted Inputs: Url to media file (url)
Outputs: Transcribed text
"""
class SpeechToTextGoogle(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
TASK: str = "speech-to-text"
FIX_COST: float = 10
PER_UNIT_COST: float = 0.1
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
super().__init__(name, dvm_config, nip89config, admin_config, options)
if options is None:
options = {}
def is_input_supported(self, tags):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "url":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if output == "" or not (output == "text/plain"):
print("Output format not supported, skipping..")
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
url = ""
input_type = "url"
start_time = 0
end_time = 0
media_format = "audio/wav"
language = "en-US"
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "url":
url = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "language":
language = tag.as_vec()[2]
elif tag.as_vec()[1] == "range":
try:
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[2], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
start_time = float(seconds)
except:
start_time = tag.as_vec()[2]
try:
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
try:
t = time.strptime(tag.as_vec()[3], "%M:%S")
seconds = t.tm_min * 60 + t.tm_sec
end_time = float(seconds)
except:
end_time = float(tag.as_vec()[3])
filepath = organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True,
media_format)
options = {
"filepath": filepath,
"language": language,
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
import speech_recognition as sr
if self.options.get("api_key"):
api_key = self.options['api_key']
else:
api_key = None
options = DVMTaskInterface.set_options(request_form)
# Speech recognition instance
asr = sr.Recognizer()
with sr.AudioFile(options["filepath"]) as source:
audio = asr.record(source) # read the entire audio file
try:
# Use Google Web Speech API to recognize speech from audio data
result = asr.recognize_google(audio, language=options["language"], key=api_key)
except Exception as e:
print(e)
# If an error occurs during speech recognition, return False and the type of the exception
return "error"
return result
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config):
dvm_config = DVMConfig()
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
npub = Keys.from_sk_str(dvm_config.PRIVATE_KEY).public_key().to_bech32()
invoice_key, admin_key, wallet_id, user_id, lnaddress = check_and_set_ln_bits_keys(identifier, npub)
dvm_config.LNBITS_INVOICE_KEY = invoice_key
dvm_config.LNBITS_ADMIN_KEY = admin_key # The dvm might pay failed jobs back
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
admin_config.LUD16 = lnaddress
options = {'api_key': None}
# A module might have options it can be initialized with, here we set a default model, and the nova-server
# address it should use. These parameters can be freely defined in the task component
nip90params = {
"language": {
"required": False,
"values": ["en-US"]
}
}
nip89info = {
"name": name,
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I extract text from media files with the Google API. I understand English by default",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": nip90params
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
return SpeechToTextGoogle(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config, options=options)
if __name__ == '__main__':
env_path = Path('.env')
if env_path.is_file():
print(f'loading environment from {env_path.resolve()}')
dotenv.load_dotenv(env_path, verbose=True, override=True)
else:
raise FileNotFoundError(f'.env file not found at {env_path} ')
admin_config = AdminConfig()
admin_config.REBROADCAST_NIP89 = False
admin_config.UPDATE_PROFILE = False
dvm = build_example("Transcriptor", "speech_recognition", admin_config)
dvm.run()
keep_alive()