nostrdvm/nostr_dvm/tasks/summarization_huggingchat.py
2024-01-12 18:08:01 +01:00

135 lines
5.7 KiB
Python

import json
import os
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
from nostr_dvm.utils.nostr_utils import get_referenced_event_by_id, get_event_by_id
from nostr_sdk import Tag
"""
This File contains a Module to summarize Text, based on a prompt using a the HuggingChat LLM on Huggingface
Accepted Inputs: Prompt (text)
Outputs: Generated text
"""
class TextSummarizationHuggingChat(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_SUMMARIZE_TEXT
TASK: str = "summarization"
FIX_COST: float = 0
dependencies = [("nostr-dvm", "nostr-dvm"),
("hugchat", "hugchat")]
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
dvm_config.SCRIPT = os.path.abspath(__file__)
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags, client=None, dvm_config=None):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "event" and input_type != "job" and input_type != "text":
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
prompt = ""
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif input_type == "event":
evt = get_event_by_id(tag.as_vec()[1], client=client, config=dvm_config)
prompt = evt.content()
elif input_type == "job":
evt = get_referenced_event_by_id(event_id=tag.as_vec()[1], client=client,
kinds=[EventDefinitions.KIND_NIP90_RESULT_EXTRACT_TEXT,
EventDefinitions.KIND_NIP90_RESULT_SUMMARIZE_TEXT,
EventDefinitions.KIND_NIP90_RESULT_TRANSLATE_TEXT,
EventDefinitions.KIND_NIP90_RESULT_CONTENT_DISCOVERY],
dvm_config=dvm_config)
if evt is None:
print("Event not found")
raise Exception
if evt.kind() == EventDefinitions.KIND_NIP90_RESULT_CONTENT_DISCOVERY:
result_list = json.loads(evt.content())
prompt = ""
for tag in result_list:
e_tag = Tag.parse(tag)
evt = get_event_by_id(e_tag.as_vec()[1], client=client, config=dvm_config)
prompt += evt.content() + "\n"
else:
prompt = evt.content()
options = {
"prompt": prompt,
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
from hugchat import hugchat
from hugchat.login import Login
sign = Login(os.getenv("HUGGINGFACE_EMAIL"), os.getenv("HUGGINGFACE_PASSWORD"))
cookie_path_dir = "./cookies_snapshot"
try:
cookies = sign.loadCookiesFromDir(
cookie_path_dir) # This will detect if the JSON file exists, return cookies if it does and raise an Exception if it's not.
except:
cookies = sign.login()
sign.saveCookiesToDir(cookie_path_dir)
options = DVMTaskInterface.set_options(request_form)
try:
chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) # or cookie_path="usercookies/<email>.json"
query_result = chatbot.query("Summarize the following text in maximum 5 sentences: " + options["prompt"])
print(query_result["text"]) # or query_result.text or query_result["text"]
return str(query_result["text"]).lstrip()
except Exception as e:
print("Error in Module: " + str(e))
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config):
dvm_config = build_default_config(identifier)
admin_config.LUD16 = dvm_config.LN_ADDRESS
nip89info = {
"name": name,
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I use a LLM connected via Huggingchat",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": {}
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
return TextSummarizationHuggingChat(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config)
if __name__ == '__main__':
process_venv(TextSummarizationHuggingChat)