nostrdvm/nostr_dvm/tasks/texttospeech.py
2023-12-29 18:08:36 +01:00

160 lines
6.5 KiB
Python

import json
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from pathlib import Path
import urllib.request
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
from nostr_dvm.utils.output_utils import upload_media_to_hoster
from nostr_dvm.utils.nostr_utils import get_event_by_id, get_referenced_event_by_id
"""
This File contains a Module to generate Audio based on an input and a voice
Accepted Inputs: Text
Outputs: Generated Audiofile
"""
class TextToSpeech(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_TEXT_TO_SPEECH
TASK: str = "text-to-speech"
FIX_COST: float = 50
PER_UNIT_COST = 0.5
dependencies = [("nostr-dvm", "nostr-dvm"),
("TTS", "TTS==0.22.0")]
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
admin_config: AdminConfig = None, options=None):
dvm_config.SCRIPT = os.path.abspath(__file__)
super().__init__(name, dvm_config, nip89config, admin_config, options)
def is_input_supported(self, tags, client=None, dvm_config=None):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "event" and input_type != "job" and input_type != "text":
return False
if input_type == "text" and len(input_value) > 250:
return False
if input_type == "event":
evt = get_event_by_id(tag.as_vec()[1], client=client, config=dvm_config)
if len(evt.content()) > 250:
return False
elif tag.as_vec()[0] == 'param':
param = tag.as_vec()[1]
if param == "language": # check for param type
if tag.as_vec()[2] != "en": # todo add other available languages
return False
return True
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
prompt = "test"
if self.options.get("input_file") and self.options.get("input_file") != "":
input_file = self.options['input_file']
else:
if not Path.exists(Path('cache/input.wav')):
input_file_url = "https://media.nostr.build/av/de104e3260be636533a56fd4468b905c1eb22b226143a997aa936b011122af8a.wav"
urllib.request.urlretrieve(input_file_url, "cache/input.wav")
input_file = "cache/input.wav"
language = "en"
for tag in event.tags():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "event":
evt = get_event_by_id(tag.as_vec()[1], client=client, config=dvm_config)
prompt = evt.content()
elif input_type == "text":
prompt = tag.as_vec()[1]
elif input_type == "job":
evt = get_referenced_event_by_id(event_id=tag.as_vec()[1], client=client,
kinds=[EventDefinitions.KIND_NIP90_RESULT_EXTRACT_TEXT,
EventDefinitions.KIND_NIP90_RESULT_SUMMARIZE_TEXT,
EventDefinitions.KIND_NIP90_RESULT_TRANSLATE_TEXT],
dvm_config=dvm_config)
prompt = evt.content()
if input_type == "url":
input_file = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
param = tag.as_vec()[1]
if param == "language": # check for param type
language = tag.as_vec()[2]
options = {
"prompt": prompt,
"input_wav": input_file,
"language": language
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
import torch
from TTS.api import TTS
options = DVMTaskInterface.set_options(request_form)
device = "cuda" if torch.cuda.is_available() else "cpu"
# else "mps" if torch.backends.mps.is_available() \
print(TTS().list_models())
try:
# model = "tts_models/deu/fairseq/vits"
# model = "tts_models/multilingual/multi-dataset/your_tts"
model = "tts_models/multilingual/multi-dataset/xtts_v2"
tts = TTS(model).to(device)
tts.tts_to_file(
text=options["prompt"],
speaker_wav=options["input_wav"], language=options["language"], file_path="outputs/output.wav")
result = upload_media_to_hoster("outputs/output.wav")
print(result)
return result
except Exception as e:
print("Error in Module: " + str(e))
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config):
dvm_config = build_default_config(identifier)
admin_config.LUD16 = dvm_config.LN_ADDRESS
# use an alternative local wav file you want to use for cloning
options = {'input_file': ""}
nip89info = {
"name": name,
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I Generate Speech from Text",
"encryptionSupported": True,
"cashuAccepted": True,
"nip90Params": {
"language": {
"required": False,
"values": []
}
}
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
nip89config.CONTENT = json.dumps(nip89info)
return TextToSpeech(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config,
options=options)
if __name__ == '__main__':
process_venv(TextToSpeech)