nostrdvm/tasks/imagegeneration_openai_dalle.py

104 lines
3.4 KiB
Python

import json
import os
import time
from multiprocessing.pool import ThreadPool
from threading import Thread
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
from dvm import DVM
from interfaces.dvmtaskinterface import DVMTaskInterface
from utils.admin_utils import AdminConfig
from utils.definitions import EventDefinitions
from utils.dvmconfig import DVMConfig
from utils.nip89_utils import NIP89Config
"""
This File contains a Module to transform Text input on NOVA-Server and receive results back.
Accepted Inputs: Prompt (text)
Outputs: An url to an Image
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
-lora # loras (weights on top of models) voxel,
"""
class ImageGenerationDALLE(DVMTaskInterface):
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "text-to-image"
COST: int = 120
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, admin_config: AdminConfig = None,
options=None):
self.init(name, dvm_config, admin_config, nip89config)
self.options = options
def is_input_supported(self, input_type, input_content):
if input_type != "text":
return False
return True
def create_request_form_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
prompt = ""
width = "1024"
height = "1024"
model = "dall-e-3"
quality = "standard"
for tag in event.tags:
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "size":
if len(tag.as_vec()) > 3:
width = (tag.as_vec()[2])
height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split("x")
if len(split) > 1:
width = split[0]
height = split[1]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
elif tag.as_vec()[1] == "quality":
quality = tag.as_vec()[2]
options = {
"prompt": prompt,
"size": width + "x" + height,
"model": model,
"quality": quality,
"number": 1
}
request_form['options'] = json.dumps(options)
return request_form
def process(self, request_form):
try:
options = DVMTaskInterface.set_options(request_form)
from openai import OpenAI
client = OpenAI()
print("Job " + request_form['jobID'] + " sent to OpenAI API..")
response = client.images.generate(
model=options['model'],
prompt=options['prompt'],
size=options['size'],
quality=options['quality'],
n=int(options['number']),
)
image_url = response.data[0].url
return image_url
except Exception as e:
print("Error in Module")
raise Exception(e)