mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-05-31 23:29:19 +02:00
177 lines
6.5 KiB
Python
177 lines
6.5 KiB
Python
import json
|
|
import os
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
|
|
import dotenv
|
|
import requests
|
|
from PIL import Image
|
|
|
|
from interfaces.dvmtaskinterface import DVMTaskInterface
|
|
from utils.admin_utils import AdminConfig
|
|
from utils.backend_utils import keep_alive
|
|
from utils.definitions import EventDefinitions
|
|
from utils.dvmconfig import DVMConfig
|
|
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
|
from utils.nostr_utils import check_and_set_private_key
|
|
from utils.output_utils import upload_media_to_hoster
|
|
from utils.zap_utils import get_price_per_sat, check_and_set_ln_bits_keys
|
|
from nostr_sdk import Keys
|
|
|
|
"""
|
|
This File contains a Module to transform Text input on OpenAI's servers with DALLE-3 and receive results back.
|
|
|
|
Accepted Inputs: Prompt (text)
|
|
Outputs: An url to an Image
|
|
"""
|
|
|
|
|
|
class ImageGenerationDALLE(DVMTaskInterface):
|
|
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
|
TASK: str = "text-to-image"
|
|
FIX_COST: float = 120
|
|
|
|
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
|
admin_config: AdminConfig = None, options=None):
|
|
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
|
|
|
def is_input_supported(self, tags):
|
|
for tag in tags:
|
|
if tag.as_vec()[0] == 'i':
|
|
input_value = tag.as_vec()[1]
|
|
input_type = tag.as_vec()[2]
|
|
if input_type != "text":
|
|
return False
|
|
|
|
elif tag.as_vec()[0] == 'output':
|
|
output = tag.as_vec()[1]
|
|
if (output == "" or
|
|
not (output == "image/png" or "image/jpg"
|
|
or output == "image/png;format=url" or output == "image/jpg;format=url")):
|
|
print("Output format not supported, skipping..")
|
|
return False
|
|
|
|
return True
|
|
|
|
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
|
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
|
prompt = ""
|
|
width = "1024"
|
|
height = "1024"
|
|
model = "dall-e-3"
|
|
quality = "standard"
|
|
|
|
for tag in event.tags():
|
|
if tag.as_vec()[0] == 'i':
|
|
input_type = tag.as_vec()[2]
|
|
if input_type == "text":
|
|
prompt = tag.as_vec()[1]
|
|
|
|
elif tag.as_vec()[0] == 'param':
|
|
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
|
if tag.as_vec()[1] == "size":
|
|
if len(tag.as_vec()) > 3:
|
|
width = (tag.as_vec()[2])
|
|
height = (tag.as_vec()[3])
|
|
elif len(tag.as_vec()) == 3:
|
|
split = tag.as_vec()[2].split("x")
|
|
if len(split) > 1:
|
|
width = split[0]
|
|
height = split[1]
|
|
elif tag.as_vec()[1] == "quality":
|
|
quality = tag.as_vec()[2]
|
|
|
|
options = {
|
|
"prompt": prompt,
|
|
"size": width + "x" + height,
|
|
"model": model,
|
|
"quality": quality,
|
|
"number": 1
|
|
}
|
|
request_form['options'] = json.dumps(options)
|
|
|
|
return request_form
|
|
|
|
def process(self, request_form):
|
|
try:
|
|
options = DVMTaskInterface.set_options(request_form)
|
|
|
|
from openai import OpenAI
|
|
client = OpenAI()
|
|
print("Job " + request_form['jobID'] + " sent to OpenAI API..")
|
|
|
|
response = client.images.generate(
|
|
model=options['model'],
|
|
prompt=options['prompt'],
|
|
size=options['size'],
|
|
quality=options['quality'],
|
|
n=int(options['number']),
|
|
)
|
|
|
|
image_url = response.data[0].url
|
|
# rehost the result instead of relying on the openai link
|
|
response = requests.get(image_url)
|
|
image = Image.open(BytesIO(response.content)).convert("RGB")
|
|
image.save("./outputs/image.jpg")
|
|
result = upload_media_to_hoster("./outputs/image.jpg")
|
|
return result
|
|
|
|
except Exception as e:
|
|
print("Error in Module")
|
|
raise Exception(e)
|
|
|
|
# We build an example here that we can call by either calling this file directly from the main directory,
|
|
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
|
# playground or elsewhere
|
|
def build_example(name, identifier, admin_config):
|
|
dvm_config = DVMConfig()
|
|
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
|
npub = Keys.from_sk_str(dvm_config.PRIVATE_KEY).public_key().to_bech32()
|
|
invoice_key, admin_key, wallet_id, user_id, lnaddress = check_and_set_ln_bits_keys(identifier, npub)
|
|
dvm_config.LNBITS_INVOICE_KEY = invoice_key
|
|
dvm_config.LNBITS_ADMIN_KEY = admin_key # The dvm might pay failed jobs back
|
|
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
|
admin_config.LUD16 = lnaddress
|
|
profit_in_sats = 10
|
|
dvm_config.FIX_COST = int(((4.0 / (get_price_per_sat("USD") * 100)) + profit_in_sats))
|
|
|
|
nip90params = {
|
|
"size": {
|
|
"required": False,
|
|
"values": ["1024:1024", "1024x1792", "1792x1024"]
|
|
}
|
|
}
|
|
nip89info = {
|
|
"name": name,
|
|
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
|
"about": "I use OpenAI's DALL·E 3",
|
|
"encryptionSupported": True,
|
|
"cashuAccepted": True,
|
|
"nip90Params": nip90params
|
|
}
|
|
|
|
|
|
nip89config = NIP89Config()
|
|
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
|
nip89info["image"])
|
|
nip89config.CONTENT = json.dumps(nip89info)
|
|
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
|
|
return ImageGenerationDALLE(name=name, dvm_config=dvm_config, nip89config=nip89config, admin_config=admin_config)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
env_path = Path('.env')
|
|
if env_path.is_file():
|
|
print(f'loading environment from {env_path.resolve()}')
|
|
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
|
else:
|
|
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
|
|
|
admin_config = AdminConfig()
|
|
admin_config.REBROADCAST_NIP89 = False
|
|
admin_config.UPDATE_PROFILE = False
|
|
dvm = build_example("Dall-E 3", "dalle3", admin_config)
|
|
dvm.run()
|
|
|
|
keep_alive()
|