ollama/discover/gpu.go

719 lines
21 KiB
Go
Raw Permalink Normal View History

//go:build linux || windows
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
2024-08-01 14:52:15 -07:00
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
"strconv"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
2024-05-29 16:37:34 -07:00
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
2024-05-29 16:37:34 -07:00
}
type oneapiHandles struct {
2024-05-24 11:18:27 +08:00
oneapi *C.oneapi_handle_t
2024-05-29 16:37:34 -07:00
deviceCount int
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
2024-05-29 16:37:34 -07:00
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
// (string values used to allow ldflags overrides at build time)
var (
CudaComputeMajorMin = "5"
CudaComputeMinorMin = "0"
)
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
var RocmComputeMajorMin = "9"
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
2024-05-29 16:37:34 -07:00
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
2024-05-29 16:37:34 -07:00
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
2024-05-29 16:37:34 -07:00
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
2024-05-29 16:37:34 -07:00
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
2024-06-05 12:07:20 -07:00
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
2024-06-05 12:07:20 -07:00
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
2024-06-05 12:07:20 -07:00
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
2024-06-05 12:07:20 -07:00
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
2024-05-29 16:37:34 -07:00
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
2024-05-29 16:37:34 -07:00
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
2024-06-05 12:07:20 -07:00
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
2024-05-29 16:37:34 -07:00
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
2024-05-29 16:37:34 -07:00
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
2024-05-24 11:18:27 +08:00
2024-05-29 16:37:34 -07:00
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
2024-05-29 16:37:34 -07:00
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
2024-05-29 16:37:34 -07:00
return oHandles
}
2024-06-05 12:07:20 -07:00
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
2024-05-29 16:37:34 -07:00
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
2024-05-29 16:37:34 -07:00
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
2024-05-29 16:37:34 -07:00
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
2024-05-29 16:37:34 -07:00
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
if err != nil {
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
}
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
if err != nil {
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
}
bootstrapErrors = []error{}
needRefresh = false
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
2024-08-01 14:52:15 -07:00
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
memInfo: mem,
Library: "cpu",
ID: "0",
2024-08-01 14:52:15 -07:00
},
CPUs: details,
},
2024-08-01 14:52:15 -07:00
}
// Load ALL libraries
2024-05-29 16:37:34 -07:00
cHandles = initCudaHandles()
// NVIDIA
2024-05-29 16:37:34 -07:00
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
2024-05-29 16:37:34 -07:00
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
} else {
2024-05-29 16:37:34 -07:00
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
2024-08-15 14:38:14 -07:00
variant := cudaVariant(gpuInfo)
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
2024-08-15 14:38:14 -07:00
gpuInfo.Variant = variant
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
2024-05-24 11:18:27 +08:00
}
2024-05-29 16:37:34 -07:00
}
// Intel
2024-07-03 17:22:13 -07:00
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
2024-08-09 11:31:38 -07:00
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
gpuInfo.DependencyPath = []string{LibOllamaPath}
2024-08-09 11:31:38 -07:00
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs, err = AMDGetGPUInfo()
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
build: Make target improvements (#7499) * llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
2024-12-10 09:47:19 -08:00
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
2024-05-29 16:37:34 -07:00
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
2024-05-29 16:37:34 -07:00
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
2024-05-24 11:18:27 +08:00
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
2024-05-24 11:18:27 +08:00
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
2024-05-24 11:18:27 +08:00
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
2024-05-24 11:18:27 +08:00
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
2024-05-29 16:37:34 -07:00
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
2024-05-29 16:37:34 -07:00
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
var ldPaths []string
switch runtime.GOOS {
case "windows":
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
patterns = append(patterns, filepath.Join(p, baseLibName))
}
next build (#8539) * add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by: jmorganca <jmorganca@gmail.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
2024-06-13 13:17:19 -07:00
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return &resp.ch, libPath, err
}
}
return nil, "", err
}
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
2024-05-24 11:18:27 +08:00
var resp C.oneapi_init_resp_t
2024-05-29 16:37:34 -07:00
num_devices := 0
2024-05-24 11:18:27 +08:00
resp.oh.verbose = getVerboseState()
var err error
2024-05-24 11:18:27 +08:00
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
2024-05-24 11:18:27 +08:00
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
2024-06-05 12:07:20 -07:00
for i := range resp.oh.num_drivers {
2024-05-29 16:37:34 -07:00
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath, err
2024-05-24 11:18:27 +08:00
}
}
return 0, nil, "", err
2024-05-24 11:18:27 +08:00
}
func getVerboseState() C.uint16_t {
2024-07-03 16:00:54 -07:00
if envconfig.Debug() {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return "", ""
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
2024-05-24 11:18:27 +08:00
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
}
}