mirror of
https://github.com/ollama/ollama.git
synced 2025-04-12 21:59:22 +02:00
ml: structured rope config to allow specifying context len
This commit refactors the Rotary Position Embedding (RoPE) implementation across the codebase to use a structured configuration approach instead of individual parameters. Key changes: - Add new RoPEConfig struct with fields for dimension, type, base frequency, and scaling - Add RopeType enum to formalize different RoPE implementation variants - Add YarnConfig struct and related configuration for YaRN (Yet Another RoPE extensioN) context extension - Update RoPE method signature across all tensor interfaces and implementations - Refactor all model implementations (llama, gemma2, gemma3, mllama) to use the new configuration structure This change improves code organization, makes the RoPE configuration more explicit, and provides better support for different RoPE variants and context extension methods.
This commit is contained in:
parent
c001b98087
commit
14c8594baf
@ -462,7 +462,7 @@ func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
|
||||
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, config ml.RoPEConfig) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
|
@ -118,6 +118,53 @@ type Context interface {
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
// RopeType represents different RoPE (Rotary Position Embedding) implementation types
|
||||
type RopeType int
|
||||
|
||||
// Available RoPE implementation types
|
||||
const (
|
||||
RopeTypeNormal RopeType = iota // Standard RoPE implementation
|
||||
RopeTypeNeox // NeoX-style RoPE implementation
|
||||
RopeTypeMRoPE // Multi-scale RoPE implementation
|
||||
RopeTypeVision // Vision-specific RoPE implementation
|
||||
)
|
||||
|
||||
type YarnConfig struct {
|
||||
YarnCtxTrain int // Context size used during training (for YaRN scaling)
|
||||
YarnExtFactor float32 // Extension factor for YaRN
|
||||
YarnAttnFactor float32 // Attention scaling factor for YaRN
|
||||
YarnBetaFast float32 // Fast decay parameter for YaRN
|
||||
YarnBetaSlow float32 // Slow decay parameter for YaRN
|
||||
}
|
||||
|
||||
// DefaultYarnConfig returns a default configuration for YaRN (Yet Another Recurrent Network)
|
||||
func DefaultYarnConfig(nCtx int32) *YarnConfig {
|
||||
return &YarnConfig{
|
||||
YarnCtxTrain: int(nCtx),
|
||||
YarnExtFactor: 0.0,
|
||||
YarnAttnFactor: 1.0,
|
||||
YarnBetaFast: 32.0,
|
||||
YarnBetaSlow: 1.0,
|
||||
}
|
||||
}
|
||||
|
||||
// RoPEConfig holds configuration for Rotary Position Embedding
|
||||
type RoPEConfig struct {
|
||||
// Dim is the dimensionality for applying rotary embeddings
|
||||
Dim uint32
|
||||
|
||||
// Type specifies the RoPE implementation variant
|
||||
Type RopeType
|
||||
|
||||
// Base controls frequency decay for the embeddings
|
||||
Base float32
|
||||
|
||||
// Scale allows scaling the effective context length
|
||||
Scale float32
|
||||
|
||||
*YarnConfig
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
Dim(n int) int
|
||||
Stride(n int) int
|
||||
@ -141,7 +188,7 @@ type Tensor interface {
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, config RoPEConfig) Tensor
|
||||
|
||||
Tanh(ctx Context) Tensor
|
||||
GELU(ctx Context) Tensor
|
||||
|
@ -907,6 +907,8 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
// GGML RoPE types
|
||||
// These are the types used in the C implementation of RoPE
|
||||
const (
|
||||
ropeTypeNorm C.int = 0
|
||||
ropeTypeNeox C.int = 2
|
||||
@ -914,7 +916,8 @@ const (
|
||||
ropeTypeVision C.int = 24
|
||||
)
|
||||
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
|
||||
// RoPE applies Rotary Position Embeddings to the tensor
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, config ml.RoPEConfig) ml.Tensor {
|
||||
if ropeFactors == nil {
|
||||
ropeFactors = &Tensor{b: t.b}
|
||||
}
|
||||
@ -924,19 +927,41 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
||||
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
|
||||
}
|
||||
|
||||
if config.YarnConfig == nil {
|
||||
config.YarnConfig = ml.DefaultYarnConfig(131072) // 131072 is the default for LLaMA, so it is common at the time of writing
|
||||
}
|
||||
|
||||
// Map Go RopeType to C implementation constants
|
||||
var ropeTypeC C.int
|
||||
switch config.Type {
|
||||
case ml.RopeTypeNormal:
|
||||
ropeTypeC = ropeTypeNorm
|
||||
case ml.RopeTypeNeox:
|
||||
ropeTypeC = ropeTypeNeox
|
||||
case ml.RopeTypeMRoPE:
|
||||
ropeTypeC = ropeTypeMrope
|
||||
case ml.RopeTypeVision:
|
||||
ropeTypeC = ropeTypeVision
|
||||
default:
|
||||
ropeTypeC = ropeTypeNorm
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_rope_ext(
|
||||
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
||||
C.int(ropeDim),
|
||||
C.int(ropeType),
|
||||
131072, // YaRN n_ctx_train
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
0., // YaRN ext_factor
|
||||
1., // YaRN attn_factor
|
||||
32., // YaRN beta_fast
|
||||
1., // YaRN beta_slow
|
||||
ctx.(*Context).ctx,
|
||||
dequant,
|
||||
positionIDs.(*Tensor).t,
|
||||
ropeFactors.(*Tensor).t,
|
||||
C.int(config.Dim),
|
||||
ropeTypeC,
|
||||
C.int(config.YarnCtxTrain),
|
||||
C.float(config.Base),
|
||||
C.float(config.Scale),
|
||||
C.float(config.YarnExtFactor),
|
||||
C.float(config.YarnAttnFactor),
|
||||
C.float(config.YarnBetaFast),
|
||||
C.float(config.YarnBetaSlow),
|
||||
),
|
||||
}
|
||||
}
|
||||
|
@ -13,10 +13,11 @@ import (
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeBase, ropeScale float32
|
||||
eps float32
|
||||
attnLogitSoftcap float32
|
||||
finalLogitSoftcap float32
|
||||
largeModelScaling bool
|
||||
ropeConfig ml.RoPEConfig
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@ -55,10 +56,15 @@ func New(c ml.Config) (model.Model, error) {
|
||||
attnKeyLen: int(c.Uint("attention.key_length")),
|
||||
attnValLen: int(c.Uint("attention.value_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base", 10000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
|
||||
finalLogitSoftcap: c.Float("final_logit_softcapping"),
|
||||
ropeConfig: ml.RoPEConfig{
|
||||
Base: c.Float("rope.freq_base", 10000.0),
|
||||
Scale: c.Float("rope.freq_scale", 1.0),
|
||||
Dim: c.Uint("attention.key_length"),
|
||||
Type: ml.RopeTypeNormal,
|
||||
YarnConfig: ml.DefaultYarnConfig(int32(c.Uint("context_length", 131072))),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
@ -78,11 +84,10 @@ type SelfAttention struct {
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
q = q.RoPE(ctx, positionIDs, nil, opts.ropeConfig)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@ -92,7 +97,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
k = k.RoPE(ctx, positionIDs, nil, opts.ropeConfig)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@ -122,7 +127,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, nil, m.ropeConfig), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
@ -13,9 +13,11 @@ import (
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
attnKeyLen, attnValLen int
|
||||
eps, ropeScale float32
|
||||
ropeLocalBase, ropeGlobalBase float32
|
||||
eps float32
|
||||
largeModelScaling bool
|
||||
|
||||
ropeLocalConfig ml.RoPEConfig
|
||||
ropeGlobalConfig ml.RoPEConfig
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
@ -56,15 +58,27 @@ func newTextModel(c ml.Config) *TextModel {
|
||||
),
|
||||
Layers: make([]TextLayer, numBlocks),
|
||||
TextOptions: &TextOptions{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
|
||||
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
|
||||
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
|
||||
ropeScale: c.Float("rope.freq_scale", 1.0),
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
|
||||
|
||||
ropeLocalConfig: ml.RoPEConfig{
|
||||
Base: c.Float("rope.local.freq_base", 10000.0),
|
||||
Scale: c.Float("rope.freq_scale", 1.0),
|
||||
Dim: c.Uint("attention.key_length", 256),
|
||||
Type: ml.RopeTypeNeox,
|
||||
YarnConfig: ml.DefaultYarnConfig(int32(c.Uint("context_length", 131072))),
|
||||
},
|
||||
ropeGlobalConfig: ml.RoPEConfig{
|
||||
Base: c.Float("rope.global.freq_base", 1000000.0),
|
||||
Scale: c.Float("rope.freq_scale", 1.0),
|
||||
Dim: c.Uint("attention.key_length", 256),
|
||||
Type: ml.RopeTypeNeox,
|
||||
YarnConfig: ml.DefaultYarnConfig(int32(c.Uint("context_length", 131072))),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
@ -86,17 +100,16 @@ type TextSelfAttention struct {
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
ropeBase := opts.ropeLocalBase
|
||||
ropeConfig := opts.ropeLocalConfig
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = opts.ropeGlobalBase
|
||||
ropeConfig = opts.ropeGlobalConfig
|
||||
}
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
q = q.RoPE(ctx, positionIDs, nil, ropeConfig)
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@ -107,7 +120,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
k = k.RoPE(ctx, positionIDs, nil, ropeConfig)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@ -120,12 +133,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextOptions.ropeLocalBase
|
||||
ropeConfig := m.ropeLocalConfig
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextOptions.ropeGlobalBase
|
||||
ropeConfig = m.ropeGlobalConfig
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, nil, ropeConfig), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
|
@ -14,8 +14,8 @@ import (
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
eps float32
|
||||
ropeConfig ml.RoPEConfig
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@ -54,9 +54,13 @@ func New(c ml.Config) (model.Model, error) {
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
ropeConfig: ml.RoPEConfig{
|
||||
Base: c.Float("rope.freq_base"),
|
||||
Scale: c.Float("rope.freq_scale", 1),
|
||||
Dim: c.Uint("rope.dimension_count"),
|
||||
Type: ml.RopeTypeNormal,
|
||||
YarnConfig: ml.DefaultYarnConfig(int32(c.Uint("context_length", 131072))),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
@ -76,15 +80,14 @@ type SelfAttention struct {
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeConfig)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeConfig)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@ -97,7 +100,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, m.ropeConfig), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
@ -20,15 +20,14 @@ type TextSelfAttention struct {
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeConfig)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeConfig)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@ -43,7 +42,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ m
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
// This will only get called for layers in the cache, which are just the self attention layers
|
||||
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
|
||||
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeConfig), nil
|
||||
}
|
||||
|
||||
return key, nil
|
||||
@ -198,8 +197,8 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
|
||||
|
||||
type TextModelOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
eps float32
|
||||
ropeConfig ml.RoPEConfig
|
||||
|
||||
crossAttentionLayers []uint32
|
||||
}
|
||||
@ -240,10 +239,14 @@ func newTextModel(c ml.Config) *TextModel {
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
crossAttentionLayers: c.Uints("attention.cross_attention_layers"),
|
||||
ropeConfig: ml.RoPEConfig{
|
||||
Base: c.Float("rope.freq_base"),
|
||||
Scale: c.Float("rope.freq_scale", 1),
|
||||
Dim: c.Uint("rope.dimension_count"),
|
||||
Type: ml.RopeTypeNormal,
|
||||
YarnConfig: ml.DefaultYarnConfig(int32(c.Uint("context_length", 131072))),
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user