sample: add error handling for empty logits (#9740)

This commit is contained in:
Parth Sareen 2025-03-20 11:11:18 -07:00 committed by GitHub
parent f8c3dbe5b5
commit 42a14f7f63
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 97 additions and 29 deletions

View File

@ -26,6 +26,10 @@ type Sampler struct {
}
func (s *Sampler) Sample(logits []float32) (int32, error) {
if len(logits) == 0 {
return -1, errors.New("sample: no logits provided to sample")
}
tokens := make([]token, len(logits))
for i := range logits {
tokens[i].id = int32(i)
@ -94,13 +98,6 @@ func (s *Sampler) sample(tokens []token) (token, error) {
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)
// TODO: this should fall back to greedy sampling
// or topP, topK values etc should be such that
// there are always tokens to sample from
if len(tokens) == 0 {
return token{}, errors.New("no tokens to sample from")
}
var r float32
if s.rng != nil {
r = s.rng.Float32()
@ -123,6 +120,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
return 1
})
if math.IsNaN(float64(sum)) {
return token{}, errors.New("sample: logits sum to NaN, check model output")
}
return tokens[idx], nil
}

View File

@ -1,6 +1,7 @@
package sample
import (
"math"
"math/rand/v2"
"testing"
)
@ -29,6 +30,29 @@ func TestWeighted(t *testing.T) {
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
// Test very high p
logits = []float32{1.0, 0.9999999999999999, 0.5, 0.1}
// Use extremely small topP to filter out all tokens
sampler = NewSampler(1.0, 0, 1e-10, 0, 0, nil)
got, err = sampler.Sample(logits)
if err != nil {
t.Error(err)
return
}
// Should get the token with the highest logit
want = int32(0)
if want != got {
t.Errorf("index mismatch: want %d, got %d", want, got)
}
logits = []float32{float32(math.NaN()), float32(math.NaN()), float32(math.NaN())}
sampler = NewSampler(1, 0, 0.95, 0.05, 0, nil)
got, err = sampler.Sample(logits)
if err == nil {
t.Errorf("expected error, got %d", got)
return
}
}
func BenchmarkSample(b *testing.B) {

View File

@ -168,27 +168,53 @@ func TestTopP(t *testing.T) {
softmax(tokens)
tokens = topK(tokens, 20)
// Then apply topP
tokens = topP(tokens, 0.95)
// Test with very high p value
got := topP(tokens, 1.0)
// Should keep tokens until cumsum > 0.95
if len(tokens) > 3 {
// Should keep all tokens since p is 1
if len(got) != len(input) {
t.Errorf("topP(1.0): should keep all tokens, got %d, want %d", len(got), len(input))
}
// Test with normal p value
got = topP(tokens, 0.95)
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
t.Logf("got: %v", got)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e6} // One dominant token
input = []float32{-1e6, -1e6, -1e7}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
tokens = topP(tokens, 0.0) // Very small p
if len(tokens) < 1 {
got = topP(tokens, 0.0)
if len(got) < 1 {
t.Error("topP should keep at least one token")
}
// Test with zero p value
got = topP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != 1 {
t.Errorf("topP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
tokens = toTokens(input)
tokens = topK(tokens, 20)
softmax(tokens)
got = topP(tokens, 1e-10)
if len(got) == 0 {
t.Errorf("topP(1e-10): should keep at least one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
func TestMinP(t *testing.T) {
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
input := []float32{-2, 0, -1, -3, 2, 1, 4, 3}
tokens := toTokens(input)
// First apply temperature and softmax
@ -225,30 +251,48 @@ func TestMinP(t *testing.T) {
t.Logf("got: %v", tokens)
}
// Test with single token
tokens = toTokens(input[:1])
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.1)
// Should keep only the highest probability token
if len(tokens) != 1 {
t.Errorf("minP(0.1): should return single token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
}
}
got := minP(tokens, 1.0)
func TestSortLogits(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
tokens := toTokens(input)
if len(got) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(got), len(tokens))
}
tokens = topK(tokens, 20)
// Test with normal p value
got = minP(tokens, 0.2)
for i := 1; i < len(tokens); i++ {
if tokens[i].value > tokens[i-1].value {
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
i, tokens[i].value, tokens[i-1].value)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
}
// Test with zero p value
got = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(got) != len(tokens) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(got))
t.Logf("got: %v", got)
}
}
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
compareLogits(t, "sortLogits", want, tokens)
}
func BenchmarkTransforms(b *testing.B) {