mirror of
https://github.com/ollama/ollama.git
synced 2025-04-03 09:29:49 +02:00
sample: add error handling for empty logits (#9740)
This commit is contained in:
parent
f8c3dbe5b5
commit
42a14f7f63
@ -26,6 +26,10 @@ type Sampler struct {
|
||||
}
|
||||
|
||||
func (s *Sampler) Sample(logits []float32) (int32, error) {
|
||||
if len(logits) == 0 {
|
||||
return -1, errors.New("sample: no logits provided to sample")
|
||||
}
|
||||
|
||||
tokens := make([]token, len(logits))
|
||||
for i := range logits {
|
||||
tokens[i].id = int32(i)
|
||||
@ -94,13 +98,6 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
tokens = topP(tokens, s.topP)
|
||||
tokens = minP(tokens, s.minP)
|
||||
|
||||
// TODO: this should fall back to greedy sampling
|
||||
// or topP, topK values etc should be such that
|
||||
// there are always tokens to sample from
|
||||
if len(tokens) == 0 {
|
||||
return token{}, errors.New("no tokens to sample from")
|
||||
}
|
||||
|
||||
var r float32
|
||||
if s.rng != nil {
|
||||
r = s.rng.Float32()
|
||||
@ -123,6 +120,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
return 1
|
||||
})
|
||||
|
||||
if math.IsNaN(float64(sum)) {
|
||||
return token{}, errors.New("sample: logits sum to NaN, check model output")
|
||||
}
|
||||
return tokens[idx], nil
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
package sample
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
"testing"
|
||||
)
|
||||
@ -29,6 +30,29 @@ func TestWeighted(t *testing.T) {
|
||||
if want != got {
|
||||
t.Errorf("index mismatch: want %d, got %d", want, got)
|
||||
}
|
||||
|
||||
// Test very high p
|
||||
logits = []float32{1.0, 0.9999999999999999, 0.5, 0.1}
|
||||
// Use extremely small topP to filter out all tokens
|
||||
sampler = NewSampler(1.0, 0, 1e-10, 0, 0, nil)
|
||||
got, err = sampler.Sample(logits)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
return
|
||||
}
|
||||
// Should get the token with the highest logit
|
||||
want = int32(0)
|
||||
if want != got {
|
||||
t.Errorf("index mismatch: want %d, got %d", want, got)
|
||||
}
|
||||
|
||||
logits = []float32{float32(math.NaN()), float32(math.NaN()), float32(math.NaN())}
|
||||
sampler = NewSampler(1, 0, 0.95, 0.05, 0, nil)
|
||||
got, err = sampler.Sample(logits)
|
||||
if err == nil {
|
||||
t.Errorf("expected error, got %d", got)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSample(b *testing.B) {
|
||||
|
@ -168,27 +168,53 @@ func TestTopP(t *testing.T) {
|
||||
softmax(tokens)
|
||||
tokens = topK(tokens, 20)
|
||||
|
||||
// Then apply topP
|
||||
tokens = topP(tokens, 0.95)
|
||||
// Test with very high p value
|
||||
got := topP(tokens, 1.0)
|
||||
|
||||
// Should keep tokens until cumsum > 0.95
|
||||
if len(tokens) > 3 {
|
||||
// Should keep all tokens since p is 1
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topP(1.0): should keep all tokens, got %d, want %d", len(got), len(input))
|
||||
}
|
||||
|
||||
// Test with normal p value
|
||||
got = topP(tokens, 0.95)
|
||||
|
||||
if len(got) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
|
||||
// Test edge case - ensure at least one token remains
|
||||
input = []float32{-1e6, -1e6, -1e6} // One dominant token
|
||||
input = []float32{-1e6, -1e6, -1e7}
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = topP(tokens, 0.0) // Very small p
|
||||
if len(tokens) < 1 {
|
||||
got = topP(tokens, 0.0)
|
||||
if len(got) < 1 {
|
||||
t.Error("topP should keep at least one token")
|
||||
}
|
||||
|
||||
// Test with zero p value
|
||||
got = topP(tokens, 0.0)
|
||||
|
||||
// Should keep only the highest probability token
|
||||
if len(got) != 1 {
|
||||
t.Errorf("topP(0.0): should keep only one token, got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
got = topP(tokens, 1e-10)
|
||||
if len(got) == 0 {
|
||||
t.Errorf("topP(1e-10): should keep at least one token, got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
}
|
||||
|
||||
func TestMinP(t *testing.T) {
|
||||
input := []float32{-3, -2, -1, 0, 1, 2, 4, 3}
|
||||
input := []float32{-2, 0, -1, -3, 2, 1, 4, 3}
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax
|
||||
@ -225,30 +251,48 @@ func TestMinP(t *testing.T) {
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
// Test with single token
|
||||
tokens = toTokens(input[:1])
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 0.1)
|
||||
|
||||
// Should keep only the highest probability token
|
||||
if len(tokens) != 1 {
|
||||
t.Errorf("minP(0.1): should return single token, got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
input = []float32{1e-10, 1e-10, 1e-10}
|
||||
tokens = toTokens(input)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 1.0)
|
||||
if len(tokens) < 1 {
|
||||
t.Error("minP should keep at least one token even with extreme probabilities")
|
||||
}
|
||||
}
|
||||
got := minP(tokens, 1.0)
|
||||
|
||||
func TestSortLogits(t *testing.T) {
|
||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
tokens := toTokens(input)
|
||||
if len(got) != 1 {
|
||||
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(got), len(tokens))
|
||||
}
|
||||
|
||||
tokens = topK(tokens, 20)
|
||||
// Test with normal p value
|
||||
got = minP(tokens, 0.2)
|
||||
|
||||
for i := 1; i < len(tokens); i++ {
|
||||
if tokens[i].value > tokens[i-1].value {
|
||||
t.Errorf("sortLogits: tokens not sorted in descending order at index %d: %f > %f",
|
||||
i, tokens[i].value, tokens[i-1].value)
|
||||
// Should keep tokens with prob >= 0.2 * max_prob
|
||||
if len(got) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
|
||||
// Test with zero p value
|
||||
got = minP(tokens, 0.0)
|
||||
|
||||
// Should keep only the highest probability token
|
||||
if len(got) != len(tokens) {
|
||||
t.Errorf("minP(0.0): should keep only one token, got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
}
|
||||
}
|
||||
|
||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
compareLogits(t, "sortLogits", want, tokens)
|
||||
}
|
||||
|
||||
func BenchmarkTransforms(b *testing.B) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user