mirror of
https://github.com/ollama/ollama.git
synced 2025-04-12 13:49:43 +02:00
wip
This commit is contained in:
parent
cfeca27133
commit
4586e137fe
@ -467,6 +467,14 @@ func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, di
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) RoPEMulti(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, sections [4]int, ropeType uint32, base, scale float32) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) IM2Col(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
||||
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
|
||||
panic("not implemented")
|
||||
}
|
||||
|
@ -2186,10 +2186,6 @@ static void ggml_metal_encode_node(
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
if (ne00 != ne10) {
|
||||
printf("mul_mat, ne00: %d, ne01: %d, ne02: %d, ne03: %d, ne10: %d, ne11: %d, ne12: %d, ne13: %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13);
|
||||
}
|
||||
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
|
@ -1,72 +1,15 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"io"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
func getNumImageTokens(imageSize, patchSize image.Point) image.Point {
|
||||
return image.Point{
|
||||
(imageSize.X-1)/patchSize.X + 1,
|
||||
(imageSize.Y-1)/patchSize.Y + 1,
|
||||
}
|
||||
}
|
||||
|
||||
func getResizeOutputImageSize(img image.Image, longestEdge int, patchSize image.Point) image.Point {
|
||||
b := img.Bounds()
|
||||
ratio := math.Max(float64(b.Max.Y)/float64(longestEdge), float64(b.Max.X)/float64(longestEdge))
|
||||
|
||||
newSize := img.Bounds().Max
|
||||
|
||||
if ratio > 1.0 {
|
||||
newSize = image.Point{
|
||||
int(math.Floor(float64(b.Max.X) / ratio)),
|
||||
int(math.Floor(float64(b.Max.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
tokens := getNumImageTokens(newSize, patchSize)
|
||||
return image.Point{
|
||||
tokens.X * patchSize.X,
|
||||
tokens.Y * patchSize.Y,
|
||||
}
|
||||
}
|
||||
|
||||
func resizeImage(img image.Image, format string, longestEdge int, patchSize image.Point) image.Image {
|
||||
if format == "png" {
|
||||
img = imageproc.Composite(img)
|
||||
}
|
||||
|
||||
newSize := getResizeOutputImageSize(img, longestEdge, patchSize)
|
||||
|
||||
// todo should be ResizeBicubic, but it doesn't exist
|
||||
return imageproc.Resize(img, newSize, imageproc.ResizeBilinear)
|
||||
}
|
||||
|
||||
func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
|
||||
img, format, err := image.Decode(imageData)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to decode image: %w", err)
|
||||
}
|
||||
|
||||
longestEdge := 1024
|
||||
patchSize := image.Point{16, 16}
|
||||
|
||||
img = resizeImage(img, format, longestEdge, patchSize)
|
||||
|
||||
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
|
||||
opts := map[string]any{}
|
||||
return data, opts, nil
|
||||
}
|
||||
|
||||
type ImageProcessor struct {
|
||||
imageSize int
|
||||
patchSize int
|
||||
@ -83,10 +26,31 @@ func newImageProcessor(c ml.Config) ImageProcessor {
|
||||
}
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, error) {
|
||||
outputSize := getResizeOutputImageSize(img, p.longestEdge, image.Point{p.patchSize, p.patchSize})
|
||||
newImage := imageproc.Composite(img)
|
||||
newImage = imageproc.Resize(newImage, outputSize, imageproc.ResizeBilinear)
|
||||
data := imageproc.Normalize(newImage, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
return data, nil
|
||||
// ProcessImage prepares an image for the vision model by:
|
||||
// 1. Compositing transparent images
|
||||
// 2. Resizing to fit model constraints while preserving aspect ratio
|
||||
// 3. Normalizing pixel values
|
||||
// Returns normalized image data and the final size in pixels
|
||||
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, image.Point, error) {
|
||||
img = imageproc.Composite(img)
|
||||
|
||||
size := img.Bounds().Size()
|
||||
ratio := max(float64(size.Y)/float64(p.longestEdge), float64(size.X)/float64(p.longestEdge))
|
||||
if ratio > 1.0 {
|
||||
size = image.Point{
|
||||
int(math.Floor(float64(size.X) / ratio)),
|
||||
int(math.Floor(float64(size.Y) / ratio)),
|
||||
}
|
||||
}
|
||||
|
||||
patchesX := (size.X-1)/p.patchSize + 1
|
||||
patchesY := (size.Y-1)/p.patchSize + 1
|
||||
size = image.Point{
|
||||
patchesX * p.patchSize,
|
||||
patchesY * p.patchSize,
|
||||
}
|
||||
|
||||
img = imageproc.Resize(img, size, imageproc.ResizeBilinear)
|
||||
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
|
||||
return data, size, nil
|
||||
}
|
||||
|
@ -1,219 +0,0 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"image"
|
||||
"image/png"
|
||||
"math"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestGetNumImageTokens(t *testing.T) {
|
||||
type numImageTokensCase struct {
|
||||
ImageSize image.Point
|
||||
PatchSize image.Point
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []numImageTokensCase{
|
||||
{
|
||||
ImageSize: image.Point{1024, 764},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{64, 48},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{800, 600},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{50, 38},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{640, 480},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{40, 30},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{320, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{20, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1320, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{83, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{2000, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{125, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{10000, 200},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{625, 13},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{1131, 577},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{71, 37},
|
||||
},
|
||||
{
|
||||
ImageSize: image.Point{16, 16},
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1, 1},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getNumImageTokens(c.ImageSize, c.PatchSize)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGetResizeOutputImageSize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
Image image.Image
|
||||
LongestEdge int
|
||||
PatchSize image.Point
|
||||
Expected image.Point
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 768},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1162, 690)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 624},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 300, 200)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{304, 208},
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.Point{1024, 288},
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := getResizeOutputImageSize(c.Image, c.LongestEdge, c.PatchSize)
|
||||
|
||||
if diff := cmp.Diff(actual, c.Expected); diff != "" {
|
||||
t.Errorf("mismatch (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestResize(t *testing.T) {
|
||||
type resizeCase struct {
|
||||
Image image.Image
|
||||
LongestEdge int
|
||||
PatchSize image.Point
|
||||
Expected image.Image
|
||||
}
|
||||
|
||||
cases := []resizeCase{
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 1024, 288)),
|
||||
},
|
||||
{
|
||||
Image: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
LongestEdge: 1024,
|
||||
PatchSize: image.Point{16, 16},
|
||||
Expected: image.NewRGBA(image.Rect(0, 0, 16, 16)),
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
actual := resizeImage(c.Image, "png", c.LongestEdge, c.PatchSize)
|
||||
|
||||
if actual.Bounds() != c.Expected.Bounds() {
|
||||
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocess(t *testing.T) {
|
||||
type preprocessCase struct {
|
||||
TestImage image.Image
|
||||
ExpectedLen int
|
||||
}
|
||||
|
||||
cases := []preprocessCase{
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
|
||||
ExpectedLen: 16 * 16 * 3 * 1,
|
||||
},
|
||||
{
|
||||
TestImage: image.NewRGBA(image.Rect(0, 0, 2000, 2000)),
|
||||
ExpectedLen: 1024 * 1024 * 3 * 1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, c := range cases {
|
||||
var buf bytes.Buffer
|
||||
err := png.Encode(&buf, c.TestImage)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
imgData, _, err := Preprocess(&buf)
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
switch len(imgData) {
|
||||
case 0:
|
||||
t.Errorf("no image data returned")
|
||||
case c.ExpectedLen:
|
||||
// ok
|
||||
default:
|
||||
t.Errorf("unexpected image data length: %d, expected: %d", len(imgData), c.ExpectedLen)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestPreprocessImages(t *testing.T) {
|
||||
for _, testFile := range []string{"flight.png", "sportsball.png"} {
|
||||
f, err := os.Open(testFile)
|
||||
if err != nil {
|
||||
t.Skipf("skipping test, no test image found at %s", testFile)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
imgData, _, err := Preprocess(f)
|
||||
if err != nil {
|
||||
t.Fatalf("error processing: %q", err)
|
||||
}
|
||||
|
||||
byteData := make([]byte, len(imgData)*4) // float32 is 4 bytes
|
||||
for i, f := range imgData {
|
||||
binary.LittleEndian.PutUint32(byteData[i*4:], math.Float32bits(f))
|
||||
}
|
||||
|
||||
outputPath := "processed_" + testFile + ".bin"
|
||||
err = os.WriteFile(outputPath, byteData, 0o644)
|
||||
if err != nil {
|
||||
t.Fatalf("error writing processed image: %q", err)
|
||||
}
|
||||
}
|
||||
}
|
@ -51,36 +51,34 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, err := m.ImageProcessor.ProcessImage(image)
|
||||
f32s, size, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Create tensor from image data
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
1036, // TODO (jmorganca): this should be returned from ProcessImage
|
||||
m.ImageProcessor.numChannels,
|
||||
)
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// fmt.Println("pixelValues", "shape", pixelValues.Shape(), "data", ml.Dump(ctx, pixelValues))
|
||||
|
||||
// Forward pass through vision model
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
|
||||
|
||||
// fmt.Println("visionOutputs", "shape", visionOutputs.Shape(), "data", ml.Dump(ctx, visionOutputs))
|
||||
// split into patches to be sent to the text transformer
|
||||
var rows []ml.Tensor
|
||||
for i := 0; i < size.Y; i++ {
|
||||
view := features.View(ctx, features.Dim(0)*i, features.Dim(0), features.Dim(0)*4, size.X)
|
||||
rows = append(rows, view)
|
||||
}
|
||||
|
||||
// Project to text embedding space
|
||||
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.VisionModel.eps)
|
||||
|
||||
// fmt.Println("visionOutputs after projector", "shape", visionOutputs.Shape(), "data", ml.Dump(ctx, visionOutputs))
|
||||
|
||||
return visionOutputs, nil
|
||||
return rows, nil
|
||||
}
|
||||
|
||||
// PostTokenize arranges Mistral 3's inputs for the forward pass
|
||||
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
|
||||
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
|
||||
// Each sequence of [IMG]...[IMG] is a single patch or "row" of vision embeddings
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
@ -88,13 +86,16 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
// Add special image tokens - using the imageTokenIndex from config
|
||||
result = append(result, input.Input{Token: 10}) // [IMG]
|
||||
result = append(result, input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}) // image data
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, inputMultimodal.Dim(1)-1)...) // [IMG] placeholders
|
||||
result = append(result, input.Input{Token: 13}) // [IMG_END]
|
||||
inputMultimodal := inp.Multimodal.([]ml.Tensor)
|
||||
for i, row := range inputMultimodal {
|
||||
result = append(result, input.Input{Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.Dim(1)}) // Image data
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Dim(1))...) // [IMG]
|
||||
if i == len(inputMultimodal)-1 {
|
||||
result = append(result, input.Input{Token: 13}) // [IMG_END]
|
||||
} else {
|
||||
result = append(result, input.Input{Token: 12}) // [IMG_BREAK]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -41,40 +41,29 @@ type SelfAttention struct {
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(0)
|
||||
// Get head dimension - use explicit value if available, otherwise calculate
|
||||
headDim := opts.headDim
|
||||
if headDim == 0 {
|
||||
headDim = opts.hiddenSize / opts.numHeads
|
||||
}
|
||||
|
||||
// Query projection and reshape
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Key projection and reshape
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Value projection and reshape
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
// Attention computation
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
|
||||
// Reshape attention output for final projection
|
||||
outputDim := headDim * opts.numHeads
|
||||
kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
||||
|
||||
// Apply output projection
|
||||
kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||
kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
@ -117,10 +106,14 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
// Process text inputs
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
|
||||
// Process through text transformer layers
|
||||
// image embeddings
|
||||
for _, image := range batch.Multimodal {
|
||||
visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Dim(0), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
}
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
cache.SetLayer(i)
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
package mistral3
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
@ -14,32 +14,12 @@ type PatchMerger struct {
|
||||
MergingLayer *nn.Linear `gguf:"merging_layer"`
|
||||
}
|
||||
|
||||
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
|
||||
// TODO: pass these in
|
||||
w := 110
|
||||
h := 74
|
||||
// tokensPerImage := w * h
|
||||
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
|
||||
d := visionOutputs.Dim(0)
|
||||
|
||||
// TODO: handle multiple images, this currently assumes one
|
||||
// fmt.Println("patchmerger visionOutputs", "shape", visionOutputs.Shape(), "data", ml.Dump(ctx, visionOutputs))
|
||||
|
||||
// Reshape to [h, w, hidden_size]
|
||||
imageGrid := visionOutputs.Reshape(ctx, h, w, d)
|
||||
// fmt.Println("imageGrid", "shape", imageGrid.Shape(), "data", ml.Dump(ctx, imageGrid))
|
||||
|
||||
// TODO: load from config
|
||||
spatialMergeSize := 2
|
||||
imageGrid := visionOutputs.Reshape(ctx, size.Y, size.X, d)
|
||||
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d, 1)
|
||||
// fmt.Println("kernel", "shape", kernel.Shape(), "data", ml.Dump(ctx, kernel))
|
||||
|
||||
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
|
||||
// fmt.Println("patches", "shape", patches.Shape(), "data", ml.Dump(ctx, patches))
|
||||
|
||||
// fmt.Println("creating reshaped", d*spatialMergeSize*spatialMergeSize, "x", patches.Dim(1)*patches.Dim(2))
|
||||
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
|
||||
// fmt.Println("reshaped", "shape", reshaped.Shape(), "data", ml.Dump(ctx, reshaped))
|
||||
|
||||
return pm.MergingLayer.Forward(ctx, reshaped)
|
||||
}
|
||||
|
||||
@ -50,23 +30,24 @@ type MultiModalProjector struct {
|
||||
PatchMerger *PatchMerger `gguf:"patch_merger"`
|
||||
|
||||
spatialMergeSize int
|
||||
imageTokenIndex int
|
||||
hasBias bool
|
||||
eps float32
|
||||
patchSize int
|
||||
}
|
||||
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
|
||||
visionOutputs = p.Norm.Forward(ctx, visionOutputs, eps)
|
||||
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs)
|
||||
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
|
||||
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
|
||||
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
|
||||
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
|
||||
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
|
||||
visionOutputs = visionOutputs.GELU(ctx)
|
||||
return p.Linear2.Forward(ctx, visionOutputs)
|
||||
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
|
||||
}
|
||||
|
||||
func newMultiModalProjector(c ml.Config) *MultiModalProjector {
|
||||
return &MultiModalProjector{
|
||||
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
|
||||
imageTokenIndex: int(c.Uint("image_token_index", 10)),
|
||||
hasBias: c.Bool("mm.projector_bias", false),
|
||||
eps: c.Float("text_config.rms_norm_eps", 1e-5),
|
||||
patchSize: int(c.Uint("vision.patch_size", 14)),
|
||||
}
|
||||
}
|
||||
|
||||
@ -115,9 +96,7 @@ type VisionEncoderLayer struct {
|
||||
|
||||
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
fmt.Println("after attention norm", "shape", hiddenState.Shape(), "data", ml.Dump(ctx, hiddenState, ml.DumpOptions{Items: 3, Precision: 6}))
|
||||
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, opts)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
@ -149,22 +128,23 @@ type VisionModel struct {
|
||||
}
|
||||
|
||||
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
numPatchesH := pixelValues.Dim(1) / m.patchSize
|
||||
numPatchesW := pixelValues.Dim(0) / m.patchSize
|
||||
numPatches := numPatchesH * numPatchesW
|
||||
numPatchesH := pixelValues.Dim(1) / m.patchSize
|
||||
numPatches := numPatchesW * numPatchesH
|
||||
hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
|
||||
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
|
||||
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
hiddenState = m.EncoderNorm.Forward(ctx, hiddenState, m.VisionModelOptions.eps)
|
||||
|
||||
totalPositions := numPatchesH * numPatchesW
|
||||
positions := make([]int32, totalPositions*4)
|
||||
|
||||
// Prepare position IDs for 2D rope
|
||||
positions := make([]int32, numPatches*4)
|
||||
for h := 0; h < numPatchesH; h++ {
|
||||
for w := 0; w < numPatchesW; w++ {
|
||||
index := h*numPatchesW + w
|
||||
positions[totalPositions+index] = int32(h)
|
||||
positions[totalPositions*2+index] = int32(w)
|
||||
idx := h*numPatchesW + w
|
||||
positions[idx] = 0 // time (unused)
|
||||
positions[numPatches+idx] = int32(h) // height
|
||||
positions[numPatches*2+idx] = int32(w) // width
|
||||
positions[numPatches*3+idx] = 0 // extra (unused)
|
||||
}
|
||||
}
|
||||
|
||||
@ -177,8 +157,6 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, m.VisionModelOptions)
|
||||
}
|
||||
|
||||
// fmt.Println("after layers", "shape", hiddenState.Shape(), "data", ml.Dump(ctx, hiddenState))
|
||||
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
|
@ -209,322 +209,6 @@ func TestLlama(t *testing.T) {
|
||||
})
|
||||
}
|
||||
|
||||
// tekken loads the Tekken tokenizer for testing
|
||||
func tekken(t testing.TB) TextProcessor {
|
||||
t.Helper()
|
||||
|
||||
// Load tokenizer config from mistral-small
|
||||
tokenizerConfigPath := filepath.Join("testdata", "mistral-small", "tokenizer_config.json")
|
||||
configFile, err := os.Open(tokenizerConfigPath)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer configFile.Close()
|
||||
|
||||
var config struct {
|
||||
AddBosToken bool `json:"add_bos_token"`
|
||||
AddEosToken bool `json:"add_eos_token"`
|
||||
BosToken string `json:"bos_token"`
|
||||
EosToken string `json:"eos_token"`
|
||||
}
|
||||
if err := json.NewDecoder(configFile).Decode(&config); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Load tokenizer.json which contains the vocabulary and other settings
|
||||
tokenizerJsonPath := filepath.Join("testdata", "mistral-small", "tokenizer.json")
|
||||
tokenizerFile, err := os.Open(tokenizerJsonPath)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer tokenizerFile.Close()
|
||||
|
||||
var tokenizerData struct {
|
||||
Model struct {
|
||||
Type string `json:"type"`
|
||||
Vocab map[string]int32 `json:"vocab"`
|
||||
Merges []string `json:"merges"`
|
||||
} `json:"model"`
|
||||
AddedTokens []struct {
|
||||
Id int32 `json:"id"`
|
||||
Content string `json:"content"`
|
||||
Special bool `json:"special"`
|
||||
} `json:"added_tokens"`
|
||||
PreTokenizer struct {
|
||||
Type string `json:"type"`
|
||||
Pretokenizers []struct {
|
||||
Type string `json:"type"`
|
||||
Pattern struct {
|
||||
String string `json:"String"`
|
||||
} `json:"pattern"`
|
||||
Behavior string `json:"behavior"`
|
||||
} `json:"pretokenizers"`
|
||||
} `json:"pre_tokenizer"`
|
||||
}
|
||||
if err := json.NewDecoder(tokenizerFile).Decode(&tokenizerData); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// Extract the pattern from pre_tokenizer if available
|
||||
var pattern string
|
||||
if tokenizerData.PreTokenizer.Type == "Sequence" && len(tokenizerData.PreTokenizer.Pretokenizers) > 0 {
|
||||
pattern = tokenizerData.PreTokenizer.Pretokenizers[0].Pattern.String
|
||||
}
|
||||
|
||||
// Combine regular vocab and added tokens
|
||||
vocab := tokenizerData.Model.Vocab
|
||||
|
||||
// Add special tokens from added_tokens
|
||||
for _, token := range tokenizerData.AddedTokens {
|
||||
vocab[token.Content] = token.Id
|
||||
}
|
||||
|
||||
// Create vocabulary arrays
|
||||
maxId := int32(-1)
|
||||
for _, id := range vocab {
|
||||
if id > maxId {
|
||||
maxId = id
|
||||
}
|
||||
}
|
||||
|
||||
vocabSize := int(maxId + 1)
|
||||
types := make([]uint32, vocabSize)
|
||||
tokens := make([]string, vocabSize)
|
||||
scores := make([]float32, vocabSize)
|
||||
|
||||
for token, id := range vocab {
|
||||
tokens[id] = token
|
||||
types[id] = TOKEN_TYPE_NORMAL
|
||||
|
||||
// Assign appropriate token types for special tokens
|
||||
if token == "<s>" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
} else if token == "</s>" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
} else if token == "[INST]" || token == "[/INST]" {
|
||||
types[id] = TOKEN_TYPE_CONTROL
|
||||
}
|
||||
}
|
||||
|
||||
// In Tekken, we don't need to load merges separately as they're part of the model
|
||||
var merges []string
|
||||
|
||||
// Create vocabulary object
|
||||
vocabObj := &Vocabulary{
|
||||
Values: tokens,
|
||||
Types: types,
|
||||
Scores: scores,
|
||||
Merges: merges,
|
||||
BOS: vocab[config.BosToken],
|
||||
EOS: vocab[config.EosToken],
|
||||
AddBOS: config.AddBosToken,
|
||||
AddEOS: config.AddEosToken,
|
||||
}
|
||||
|
||||
// Use pattern from tokenizer.json if available
|
||||
if pattern != "" {
|
||||
// Ensure pattern has proper escaping for Go regexp
|
||||
pattern = strings.ReplaceAll(pattern, "p{", "\\p{")
|
||||
return NewBytePairEncoding(pattern, vocabObj)
|
||||
}
|
||||
|
||||
// Fallback pattern if not found
|
||||
return NewBytePairEncoding(
|
||||
`\p{L}+|\p{N}+|[^\s\p{L}\p{N}]+|\s+`,
|
||||
vocabObj,
|
||||
)
|
||||
}
|
||||
|
||||
func TestTekken(t *testing.T) {
|
||||
// Skip if the test data isn't available
|
||||
if _, err := os.Stat(filepath.Join("testdata", "mistral-small")); os.IsNotExist(err) {
|
||||
t.Skip("Mistral-small test data not available")
|
||||
}
|
||||
|
||||
tokenizer := tekken(t)
|
||||
|
||||
t.Run("whitespace_handling", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// The key difference from SentencePiece is that Tekken doesn't prepend whitespace
|
||||
cases := []struct {
|
||||
input string
|
||||
expected string
|
||||
}{
|
||||
{" hello", " hello"},
|
||||
{"hello ", "hello "},
|
||||
{"hello world", "hello world"},
|
||||
{" hello world ", " hello world "},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
if decoded != tc.expected {
|
||||
t.Errorf("Whitespace handling: got %q, want %q", decoded, tc.expected)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("chat_templates", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test the Tekken chat template format which doesn't have spaces after special tokens
|
||||
templates := []struct {
|
||||
input string
|
||||
expectSpace bool // whether we expect a space after special tokens
|
||||
}{
|
||||
{"<s>[INST]user message[/INST]", false},
|
||||
{"<s>[INST] user message[/INST]", true},
|
||||
{"<s>[INST]user message [/INST]", true},
|
||||
}
|
||||
|
||||
for _, tc := range templates {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
// Check if there's a space after special tokens
|
||||
hasSpaceAfterINST := strings.Contains(decoded, "[INST] ")
|
||||
|
||||
if hasSpaceAfterINST != tc.expectSpace {
|
||||
t.Errorf("Chat template space handling: got space=%v, want space=%v for %q",
|
||||
hasSpaceAfterINST, tc.expectSpace, tc.input)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("special_tokens", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test how Tekken handles special tokens
|
||||
cases := []struct {
|
||||
input string
|
||||
expected []string // We'll check if these tokens are in the decoded output
|
||||
}{
|
||||
{"<s>[INST]hello[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]"}},
|
||||
{"[INST]hello[/INST]</s>", []string{"[INST]", "hello", "[/INST]", "</s>"}},
|
||||
{"<s>[INST]hello[/INST]</s>[INST]again[/INST]", []string{"<s>", "[INST]", "hello", "[/INST]", "</s>", "[INST]", "again", "[/INST]"}},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
ids, err := tokenizer.Encode(tc.input, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", tc.input, err)
|
||||
continue
|
||||
}
|
||||
|
||||
for _, expected := range tc.expected {
|
||||
if !strings.Contains(decoded, expected) {
|
||||
t.Errorf("Special token handling: %q missing in decoded output %q", expected, decoded)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("vocabulary_coverage", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Tekken has a larger vocabulary, so test coverage of various token types
|
||||
samples := []string{
|
||||
"Hello world!",
|
||||
"This is a test of the Tekken tokenizer.",
|
||||
"It has a considerably larger vocabulary size.",
|
||||
"Special characters: !@#$%^&*()",
|
||||
"Numbers: 1234567890",
|
||||
"Multiple languages: こんにちは 你好 안녕하세요",
|
||||
"Code snippets: def function(): return True",
|
||||
}
|
||||
|
||||
for _, sample := range samples {
|
||||
ids, err := tokenizer.Encode(sample, false)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to encode %q: %v", sample, err)
|
||||
continue
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to decode tokens for %q: %v", sample, err)
|
||||
continue
|
||||
}
|
||||
|
||||
if decoded != sample {
|
||||
t.Errorf("Vocabulary coverage: got %q, want %q", decoded, sample)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("splitting_behavior", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test the splitting behavior which might differ from SentencePiece
|
||||
cases := map[string][]string{
|
||||
"Hello World!": {"Hello", " World", "!"},
|
||||
"user message": {"user", " message"},
|
||||
"[INST]hello": {"[INST]", "hello"},
|
||||
"hello[/INST]": {"hello", "[/INST]"},
|
||||
}
|
||||
|
||||
for s, want := range cases {
|
||||
got := slices.Collect(tokenizer.(*BytePairEncoding).split(s))
|
||||
if diff := cmp.Diff(want, got); diff != "" {
|
||||
t.Errorf("Splitting behavior no match (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("full_chat_sequence", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Test a complete chat sequence with Tekken's format
|
||||
chatSequence := "<s>[INST]user message[/INST]assistant message</s>[INST]new user message[/INST]"
|
||||
|
||||
ids, err := tokenizer.Encode(chatSequence, false)
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to encode chat sequence: %v", err)
|
||||
}
|
||||
|
||||
decoded, err := tokenizer.Decode(ids)
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to decode chat sequence tokens: %v", err)
|
||||
}
|
||||
|
||||
// In Tekken, the whitespace shouldn't be added after special tokens
|
||||
if strings.Contains(decoded, "[INST] ") {
|
||||
t.Errorf("Tekken chat sequence has unexpected space after [INST]: %q", decoded)
|
||||
}
|
||||
|
||||
if strings.Contains(decoded, "[/INST] ") {
|
||||
t.Errorf("Tekken chat sequence has unexpected space after [/INST]: %q", decoded)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func BenchmarkBytePairEncoding(b *testing.B) {
|
||||
tokenizer := llama(b)
|
||||
bts, err := os.ReadFile(filepath.Join("testdata", "war-and-peace.txt"))
|
||||
|
@ -182,10 +182,6 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
for _, t := range tokens {
|
||||
decoded, _ := s.model.(model.TextProcessor).Decode([]int32{t})
|
||||
fmt.Println("token", t, "decoded", decoded)
|
||||
}
|
||||
for _, t := range tokens {
|
||||
inputs = append(inputs, input.Input{Token: t})
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user