mirror of
https://github.com/ollama/ollama.git
synced 2025-03-18 05:41:43 +01:00
comments
This commit is contained in:
parent
daaf42e4a4
commit
45df786f09
@ -12,7 +12,6 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"iter"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
@ -29,26 +28,34 @@ import (
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
func devices() iter.Seq[*C.struct_ggml_backend_device] {
|
||||
return func(yield func(*C.struct_ggml_backend_device) bool) {
|
||||
ggml.OnceLoad()
|
||||
for i := range C.ggml_backend_dev_count() {
|
||||
if !yield(C.ggml_backend_dev_get(i)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
func devices() []*C.struct_ggml_backend_device {
|
||||
ggml.OnceLoad()
|
||||
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
|
||||
for i := range ds {
|
||||
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
|
||||
}
|
||||
|
||||
return ds
|
||||
}
|
||||
|
||||
type Backend struct {
|
||||
meta *fs.GGML
|
||||
sched *C.struct_ggml_backend_sched
|
||||
tensors map[string]*C.struct_ggml_tensor
|
||||
input *C.struct_ggml_backend
|
||||
output *C.struct_ggml_backend
|
||||
layers map[int]*C.struct_ggml_backend
|
||||
|
||||
// input is the backend used for inputs
|
||||
input *C.struct_ggml_backend
|
||||
|
||||
// output is the backend used for outputs
|
||||
output *C.struct_ggml_backend
|
||||
|
||||
// layers is the backend used for repeating layers
|
||||
layers map[int]*C.struct_ggml_backend
|
||||
|
||||
flashAttention bool
|
||||
|
||||
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
|
||||
maxGraphNodes int
|
||||
}
|
||||
|
||||
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
@ -73,7 +80,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
|
||||
var cpus, accels, gpus []*C.struct_ggml_backend_device
|
||||
for d := range devices() {
|
||||
for _, d := range devices() {
|
||||
switch C.ggml_backend_dev_type(d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
cpus = append(cpus, d)
|
||||
@ -84,6 +91,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// create list of buffer types for the cpu
|
||||
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
|
||||
for _, d := range append(accels, append(gpus, cpus...)...) {
|
||||
switch C.ggml_backend_dev_type(d) {
|
||||
@ -93,6 +101,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// create list of buffer types for each gpu
|
||||
var gpuDeviceBufferTypes []deviceBufferType
|
||||
for _, d := range gpus {
|
||||
bt := C.ggml_backend_dev_buffer_type(d)
|
||||
@ -102,44 +111,53 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
})
|
||||
}
|
||||
|
||||
splits := make([]float32, len(gpus))
|
||||
if func() bool {
|
||||
for _, s := range params.TensorSplit {
|
||||
if s != 0 {
|
||||
return true
|
||||
}
|
||||
useDefaultSplit := true
|
||||
for _, s := range params.TensorSplit {
|
||||
if s != 0 {
|
||||
useDefaultSplit = false
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}() {
|
||||
splits = params.TensorSplit
|
||||
} else {
|
||||
// calculate splits
|
||||
splits := make([]float32, len(gpus))
|
||||
if useDefaultSplit {
|
||||
// default: split on free memory
|
||||
for i := range splits {
|
||||
var free, total C.size_t
|
||||
C.ggml_backend_dev_memory(gpus[i], &free, &total)
|
||||
splits[i] = float32(free)
|
||||
}
|
||||
} else {
|
||||
splits = params.TensorSplit
|
||||
}
|
||||
|
||||
var sum float32
|
||||
// cumulative sum of all splits
|
||||
for i := range splits {
|
||||
sum += splits[i]
|
||||
splits[i] = sum
|
||||
}
|
||||
|
||||
// normalize splits
|
||||
for i := range splits {
|
||||
splits[i] /= sum
|
||||
}
|
||||
|
||||
// inputs always use cpu
|
||||
input := cpuDeviceBufferType
|
||||
|
||||
blocks := int(meta.KV().BlockCount())
|
||||
|
||||
// define a range of gpu layers. anything outside of this range is assigned to the cpu
|
||||
gpuRangeStart := max(0, blocks-params.NumGPULayers)
|
||||
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
|
||||
assignLayer := func(i int) deviceBufferType {
|
||||
if i >= params.NumGPULayers {
|
||||
if i < gpuRangeStart || i >= gpuRangeStop {
|
||||
return cpuDeviceBufferType
|
||||
}
|
||||
|
||||
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i)/float32(blocks+1) < f })
|
||||
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
|
||||
if index < 0 || index >= len(gpuDeviceBufferTypes) {
|
||||
return cpuDeviceBufferType
|
||||
}
|
||||
@ -147,15 +165,18 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
return gpuDeviceBufferTypes[index]
|
||||
}
|
||||
|
||||
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
|
||||
layers := make([]deviceBufferType, blocks)
|
||||
for i := range layers {
|
||||
layers[i] = assignLayer(i)
|
||||
}
|
||||
|
||||
// outputs are assigned iff allowed by splits and configured number of gpu layers
|
||||
output := assignLayer(blocks)
|
||||
|
||||
maxTensors := len(meta.Tensors().Items())
|
||||
maxTensors += 1
|
||||
// each layer has at most 2 extra tensors for rope operations
|
||||
maxTensors += blocks * 2
|
||||
|
||||
type tensor struct {
|
||||
@ -163,8 +184,10 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
target string
|
||||
}
|
||||
|
||||
// some tensors are mapped to different names so keep a list
|
||||
targets := make(map[string][]string)
|
||||
|
||||
// contexts are shared by tensors of the same buffer type
|
||||
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
||||
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
||||
for _, bt := range bts {
|
||||
@ -217,19 +240,21 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
case contains(t.Name, "cls", "output", "output_norm"):
|
||||
createTensor(tensor{source: t}, output.bts)
|
||||
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
|
||||
// TODO: assign vision tensors to the gpu if possible
|
||||
createTensor(tensor{source: t}, input.bts)
|
||||
default:
|
||||
if i := func() int {
|
||||
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
||||
if i, err := strconv.Atoi(fields[0]); err == nil {
|
||||
return i
|
||||
}
|
||||
layerIndex := -1
|
||||
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
||||
if i, err := strconv.Atoi(fields[0]); err == nil {
|
||||
layerIndex = i
|
||||
}
|
||||
}
|
||||
|
||||
return -1
|
||||
}(); i >= 0 {
|
||||
createTensor(tensor{source: t}, layers[i].bts)
|
||||
if layerIndex >= 0 {
|
||||
createTensor(tensor{source: t}, layers[layerIndex].bts)
|
||||
} else {
|
||||
// this is a repeating tensor that doesn't explicitly associated with a layer so
|
||||
// duplicate it for each layer
|
||||
for i, layer := range layers {
|
||||
createTensor(tensor{
|
||||
source: t,
|
||||
@ -240,8 +265,8 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
}
|
||||
|
||||
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
|
||||
|
||||
// allocate buffers for each context
|
||||
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
|
||||
for bt, c := range ctxs {
|
||||
if C.ggml_get_first_tensor(c) == nil {
|
||||
continue
|
||||
@ -249,15 +274,14 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
|
||||
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
||||
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
||||
bbs[c] = append(bbs[c], b)
|
||||
bbs[c] = b
|
||||
}
|
||||
|
||||
for bs := range maps.Values(bbs) {
|
||||
for _, b := range bs {
|
||||
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
|
||||
}
|
||||
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
|
||||
}
|
||||
|
||||
// map tensor names to tensors for easy lookup later
|
||||
tensors := make(map[string]*C.struct_ggml_tensor)
|
||||
for _, c := range ctxs {
|
||||
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
|
||||
@ -265,6 +289,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
}
|
||||
|
||||
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
|
||||
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
||||
var g errgroup.Group
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
@ -289,10 +314,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.free(unsafe.Pointer(cname))
|
||||
|
||||
return nil
|
||||
})
|
||||
}
|
||||
@ -302,39 +324,45 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// map devices to backends so tensors created post initialization can be assigned to the correct device
|
||||
deviceBackends := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend)
|
||||
var backends []*C.struct_ggml_backend
|
||||
var bufts []*C.struct_ggml_backend_buffer_type
|
||||
|
||||
// create backends and buffer types used for the compute graph scheduler
|
||||
var schedBackends []*C.struct_ggml_backend
|
||||
var schedBufts []*C.struct_ggml_backend_buffer_type
|
||||
for _, d := range append(gpus, append(accels, cpus...)...) {
|
||||
b := C.ggml_backend_dev_init(d, nil)
|
||||
backends = append(backends, b)
|
||||
schedBackends = append(schedBackends, b)
|
||||
deviceBackends[d] = b
|
||||
|
||||
bt := C.ggml_backend_get_default_buffer_type(b)
|
||||
// use the first gpu host buffer type for gpu if possible
|
||||
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
|
||||
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
|
||||
bt = hbt
|
||||
}
|
||||
}
|
||||
|
||||
bufts = append(bufts, bt)
|
||||
schedBufts = append(schedBufts, bt)
|
||||
|
||||
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
|
||||
if C.ggml_backend_is_cpu(b) {
|
||||
// set number of threads for cpu backend
|
||||
C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
|
||||
}
|
||||
}
|
||||
|
||||
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
|
||||
return &Backend{
|
||||
flashAttention: params.FlashAttention,
|
||||
meta: meta,
|
||||
tensors: tensors,
|
||||
sched: C.ggml_backend_sched_new(
|
||||
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
||||
C.int(len(backends)),
|
||||
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
|
||||
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
|
||||
C.int(len(schedBackends)),
|
||||
C.size_t(maxGraphNodes),
|
||||
true,
|
||||
),
|
||||
input: deviceBackends[input.d],
|
||||
@ -346,6 +374,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
}
|
||||
return m
|
||||
}(),
|
||||
maxGraphNodes: maxGraphNodes,
|
||||
}, nil
|
||||
}
|
||||
|
||||
@ -366,10 +395,11 @@ func (b *Backend) Get(name string) ml.Tensor {
|
||||
}
|
||||
|
||||
func (b *Backend) NewContext() ml.Context {
|
||||
return b.NewContextSize(max(8192, len(b.meta.Tensors().Items())*5))
|
||||
return b.NewContextSize(b.maxGraphNodes)
|
||||
}
|
||||
|
||||
func (b *Backend) NewContextSize(n int) ml.Context {
|
||||
n = min(n, b.maxGraphNodes)
|
||||
return &Context{
|
||||
b: b,
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
@ -378,9 +408,6 @@ func (b *Backend) NewContextSize(n int) ml.Context {
|
||||
}),
|
||||
backend: C.ggml_backend_sched_get_backend(b.sched, 0),
|
||||
maxGraphNodes: n,
|
||||
input: b.input,
|
||||
output: b.output,
|
||||
layers: b.layers,
|
||||
}
|
||||
}
|
||||
|
||||
@ -401,46 +428,38 @@ type Context struct {
|
||||
// backend is the backend used for new tensors
|
||||
backend *C.struct_ggml_backend
|
||||
|
||||
// input is the backend used for inputs
|
||||
input *C.struct_ggml_backend
|
||||
|
||||
// output is the backend used for outputs
|
||||
output *C.struct_ggml_backend
|
||||
|
||||
// output is the backend used for repeating layers
|
||||
layers map[int]*C.struct_ggml_backend
|
||||
|
||||
// maxGraphNodes is the maximum allowed number of graph nodes in this context
|
||||
maxGraphNodes int
|
||||
}
|
||||
|
||||
func (c *Context) Input() ml.Context {
|
||||
if c.input != nil {
|
||||
func (c Context) Input() ml.Context {
|
||||
if c.b.input != nil {
|
||||
return &Context{
|
||||
b: c.b,
|
||||
ctx: c.ctx,
|
||||
backend: c.input,
|
||||
backend: c.b.input,
|
||||
maxGraphNodes: c.maxGraphNodes,
|
||||
}
|
||||
}
|
||||
|
||||
return c
|
||||
return &c
|
||||
}
|
||||
|
||||
func (c *Context) Output() ml.Context {
|
||||
if c.output != nil {
|
||||
func (c Context) Output() ml.Context {
|
||||
if c.b.output != nil {
|
||||
return &Context{
|
||||
b: c.b,
|
||||
ctx: c.ctx,
|
||||
backend: c.output,
|
||||
backend: c.b.output,
|
||||
maxGraphNodes: c.maxGraphNodes,
|
||||
}
|
||||
}
|
||||
|
||||
return c
|
||||
return &c
|
||||
}
|
||||
|
||||
func (c *Context) Layer(i int) ml.Context {
|
||||
if backend, ok := c.layers[i]; ok {
|
||||
func (c Context) Layer(i int) ml.Context {
|
||||
if backend, ok := c.b.layers[i]; ok {
|
||||
return &Context{
|
||||
b: c.b,
|
||||
ctx: c.ctx,
|
||||
@ -449,7 +468,7 @@ func (c *Context) Layer(i int) ml.Context {
|
||||
}
|
||||
}
|
||||
|
||||
return c
|
||||
return &c
|
||||
}
|
||||
|
||||
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
||||
@ -464,10 +483,9 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *Context) Compute(tensors ...ml.Tensor) {
|
||||
C.ggml_backend_sched_reset(c.b.sched)
|
||||
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
|
||||
func (c Context) Compute(tensors ...ml.Tensor) {
|
||||
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
|
||||
C.ggml_backend_sched_reset(c.b.sched)
|
||||
|
||||
needSync := true
|
||||
sync := func() {
|
||||
@ -484,7 +502,7 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Context) MaxGraphNodes() int {
|
||||
func (c Context) MaxGraphNodes() int {
|
||||
return c.maxGraphNodes
|
||||
}
|
||||
|
||||
@ -498,7 +516,22 @@ func shapeToGGML(shape []int) *C.int64_t {
|
||||
}
|
||||
|
||||
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
||||
if len(shape) < 1 || len(shape) > 4 {
|
||||
var cdtype uint32
|
||||
switch dtype {
|
||||
case ml.DTypeF32:
|
||||
cdtype = C.GGML_TYPE_F32
|
||||
case ml.DTypeF16:
|
||||
cdtype = C.GGML_TYPE_F16
|
||||
case ml.DTypeI32:
|
||||
cdtype = C.GGML_TYPE_I32
|
||||
default:
|
||||
panic("unsupported dtype")
|
||||
}
|
||||
|
||||
if len(shape) < 1 {
|
||||
var shape C.int64_t = 0
|
||||
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
|
||||
} else if len(shape) > 4 {
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
|
||||
@ -508,18 +541,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
var t *C.struct_ggml_tensor
|
||||
switch dtype {
|
||||
case ml.DTypeF32:
|
||||
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
|
||||
case ml.DTypeF16:
|
||||
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
|
||||
case ml.DTypeI32:
|
||||
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
|
||||
default:
|
||||
panic("unsupported dtype")
|
||||
}
|
||||
|
||||
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
|
||||
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
return &Tensor{b: c.b, t: t}
|
||||
@ -549,7 +571,7 @@ func checkShape[S ~[]E, E any](s S, shape ...int) error {
|
||||
}
|
||||
|
||||
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
if err := checkShape(s, shape...); err != nil {
|
||||
if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@ -559,7 +581,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
if err := checkShape(s, shape...); err != nil {
|
||||
if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
@ -568,8 +590,8 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return t, nil
|
||||
}
|
||||
|
||||
func (c Context) Close() {
|
||||
if c.ctx != nil {
|
||||
func (c *Context) Close() {
|
||||
if c != nil {
|
||||
C.ggml_free(c.ctx)
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user