This commit is contained in:
Michael Yang 2025-03-04 13:06:56 -08:00
parent daaf42e4a4
commit 45df786f09

View File

@ -12,7 +12,6 @@ import (
"errors"
"fmt"
"io"
"iter"
"log/slog"
"maps"
"os"
@ -29,26 +28,34 @@ import (
"golang.org/x/sync/errgroup"
)
func devices() iter.Seq[*C.struct_ggml_backend_device] {
return func(yield func(*C.struct_ggml_backend_device) bool) {
ggml.OnceLoad()
for i := range C.ggml_backend_dev_count() {
if !yield(C.ggml_backend_dev_get(i)) {
return
}
}
func devices() []*C.struct_ggml_backend_device {
ggml.OnceLoad()
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
for i := range ds {
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
}
return ds
}
type Backend struct {
meta *fs.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
input *C.struct_ggml_backend
output *C.struct_ggml_backend
layers map[int]*C.struct_ggml_backend
// input is the backend used for inputs
input *C.struct_ggml_backend
// output is the backend used for outputs
output *C.struct_ggml_backend
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
@ -73,7 +80,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
for d := range devices() {
for _, d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
cpus = append(cpus, d)
@ -84,6 +91,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
}
// create list of buffer types for the cpu
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
@ -93,6 +101,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
}
// create list of buffer types for each gpu
var gpuDeviceBufferTypes []deviceBufferType
for _, d := range gpus {
bt := C.ggml_backend_dev_buffer_type(d)
@ -102,44 +111,53 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
})
}
splits := make([]float32, len(gpus))
if func() bool {
for _, s := range params.TensorSplit {
if s != 0 {
return true
}
useDefaultSplit := true
for _, s := range params.TensorSplit {
if s != 0 {
useDefaultSplit = false
break
}
}
return false
}() {
splits = params.TensorSplit
} else {
// calculate splits
splits := make([]float32, len(gpus))
if useDefaultSplit {
// default: split on free memory
for i := range splits {
var free, total C.size_t
C.ggml_backend_dev_memory(gpus[i], &free, &total)
splits[i] = float32(free)
}
} else {
splits = params.TensorSplit
}
var sum float32
// cumulative sum of all splits
for i := range splits {
sum += splits[i]
splits[i] = sum
}
// normalize splits
for i := range splits {
splits[i] /= sum
}
// inputs always use cpu
input := cpuDeviceBufferType
blocks := int(meta.KV().BlockCount())
// define a range of gpu layers. anything outside of this range is assigned to the cpu
gpuRangeStart := max(0, blocks-params.NumGPULayers)
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
assignLayer := func(i int) deviceBufferType {
if i >= params.NumGPULayers {
if i < gpuRangeStart || i >= gpuRangeStop {
return cpuDeviceBufferType
}
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i)/float32(blocks+1) < f })
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
if index < 0 || index >= len(gpuDeviceBufferTypes) {
return cpuDeviceBufferType
}
@ -147,15 +165,18 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return gpuDeviceBufferTypes[index]
}
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
layers := make([]deviceBufferType, blocks)
for i := range layers {
layers[i] = assignLayer(i)
}
// outputs are assigned iff allowed by splits and configured number of gpu layers
output := assignLayer(blocks)
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
// each layer has at most 2 extra tensors for rope operations
maxTensors += blocks * 2
type tensor struct {
@ -163,8 +184,10 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
target string
}
// some tensors are mapped to different names so keep a list
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
@ -217,19 +240,21 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
case contains(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
// TODO: assign vision tensors to the gpu if possible
createTensor(tensor{source: t}, input.bts)
default:
if i := func() int {
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
return i
}
layerIndex := -1
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
layerIndex = i
}
}
return -1
}(); i >= 0 {
createTensor(tensor{source: t}, layers[i].bts)
if layerIndex >= 0 {
createTensor(tensor{source: t}, layers[layerIndex].bts)
} else {
// this is a repeating tensor that doesn't explicitly associated with a layer so
// duplicate it for each layer
for i, layer := range layers {
createTensor(tensor{
source: t,
@ -240,8 +265,8 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
}
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
@ -249,15 +274,14 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = append(bbs[c], b)
bbs[c] = b
}
for bs := range maps.Values(bbs) {
for _, b := range bs {
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
}
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
}
// map tensor names to tensors for easy lookup later
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
@ -265,6 +289,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
}
// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
@ -289,10 +314,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return errors.New("short read")
}
cname := C.CString(t.Name)
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
C.free(unsafe.Pointer(cname))
return nil
})
}
@ -302,39 +324,45 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return nil, err
}
// map devices to backends so tensors created post initialization can be assigned to the correct device
deviceBackends := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend)
var backends []*C.struct_ggml_backend
var bufts []*C.struct_ggml_backend_buffer_type
// create backends and buffer types used for the compute graph scheduler
var schedBackends []*C.struct_ggml_backend
var schedBufts []*C.struct_ggml_backend_buffer_type
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
backends = append(backends, b)
schedBackends = append(schedBackends, b)
deviceBackends[d] = b
bt := C.ggml_backend_get_default_buffer_type(b)
// use the first gpu host buffer type for gpu if possible
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
bt = hbt
}
}
bufts = append(bufts, bt)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
}
}
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
true,
),
input: deviceBackends[input.d],
@ -346,6 +374,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
}
return m
}(),
maxGraphNodes: maxGraphNodes,
}, nil
}
@ -366,10 +395,11 @@ func (b *Backend) Get(name string) ml.Tensor {
}
func (b *Backend) NewContext() ml.Context {
return b.NewContextSize(max(8192, len(b.meta.Tensors().Items())*5))
return b.NewContextSize(b.maxGraphNodes)
}
func (b *Backend) NewContextSize(n int) ml.Context {
n = min(n, b.maxGraphNodes)
return &Context{
b: b,
ctx: C.ggml_init(C.struct_ggml_init_params{
@ -378,9 +408,6 @@ func (b *Backend) NewContextSize(n int) ml.Context {
}),
backend: C.ggml_backend_sched_get_backend(b.sched, 0),
maxGraphNodes: n,
input: b.input,
output: b.output,
layers: b.layers,
}
}
@ -401,46 +428,38 @@ type Context struct {
// backend is the backend used for new tensors
backend *C.struct_ggml_backend
// input is the backend used for inputs
input *C.struct_ggml_backend
// output is the backend used for outputs
output *C.struct_ggml_backend
// output is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
}
func (c *Context) Input() ml.Context {
if c.input != nil {
func (c Context) Input() ml.Context {
if c.b.input != nil {
return &Context{
b: c.b,
ctx: c.ctx,
backend: c.input,
backend: c.b.input,
maxGraphNodes: c.maxGraphNodes,
}
}
return c
return &c
}
func (c *Context) Output() ml.Context {
if c.output != nil {
func (c Context) Output() ml.Context {
if c.b.output != nil {
return &Context{
b: c.b,
ctx: c.ctx,
backend: c.output,
backend: c.b.output,
maxGraphNodes: c.maxGraphNodes,
}
}
return c
return &c
}
func (c *Context) Layer(i int) ml.Context {
if backend, ok := c.layers[i]; ok {
func (c Context) Layer(i int) ml.Context {
if backend, ok := c.b.layers[i]; ok {
return &Context{
b: c.b,
ctx: c.ctx,
@ -449,7 +468,7 @@ func (c *Context) Layer(i int) ml.Context {
}
}
return c
return &c
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
@ -464,10 +483,9 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_reset(c.b.sched)
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
func (c Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
C.ggml_backend_sched_reset(c.b.sched)
needSync := true
sync := func() {
@ -484,7 +502,7 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
}
}
func (c *Context) MaxGraphNodes() int {
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
@ -498,7 +516,22 @@ func shapeToGGML(shape []int) *C.int64_t {
}
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
default:
panic("unsupported dtype")
}
if len(shape) < 1 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@ -508,18 +541,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}
@ -549,7 +571,7 @@ func checkShape[S ~[]E, E any](s S, shape ...int) error {
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
return nil, err
}
@ -559,7 +581,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
if err := checkShape(s, shape...); err != nil {
if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
return nil, err
}
@ -568,8 +590,8 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return t, nil
}
func (c Context) Close() {
if c.ctx != nil {
func (c *Context) Close() {
if c != nil {
C.ggml_free(c.ctx)
}
}