feat: qwen3 embed (#12301)

* cleanup

* use pooling.TypeNone

* pooling test

* qwen3 embed
This commit is contained in:
Michael Yang
2025-09-18 15:50:32 -07:00
committed by GitHub
parent 22ccdd74c2
commit 7460259eb3
2 changed files with 88 additions and 4 deletions

View File

@@ -0,0 +1,73 @@
package qwen3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.BytePairEncoding
*Model
poolingType pooling.Type
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbed(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
layers[i].MLP = &dense{}
}
m := embedModel{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Model: &Model{
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
},
poolingType: pooling.Type(c.Uint("pooling_type")),
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}

View File

@@ -151,14 +151,25 @@ type Model struct {
*Options *Options
} }
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
return m.Output.Forward(ctx, hiddenStates), nil
}
// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions)) positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs) hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers { for i, layer := range m.Layers {
m.Cache.SetLayer(i) if m.Cache != nil {
m.Cache.SetLayer(i)
}
var outputs ml.Tensor var outputs ml.Tensor
if i == len(m.Layers)-1 { if i == len(m.Layers)-1 {
@@ -168,8 +179,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options) hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
} }
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps) return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
return m.Output.Forward(ctx, hiddenStates), nil
} }
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
@@ -227,4 +237,5 @@ func New(c fs.Config) (model.Model, error) {
func init() { func init() {
model.Register("qwen3", New) model.Register("qwen3", New)
model.Register("qwen3moe", New) model.Register("qwen3moe", New)
model.Register("qwen3_embed", newEmbed)
} }