mirror of
https://github.com/ollama/ollama.git
synced 2025-08-26 23:11:42 +02:00
ml: add more rope options (#10775)
This commit is contained in:
@@ -115,21 +115,6 @@ type Context interface {
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
// RopeOptions contains optional parameters for RoPE function
|
||||
type RopeOptions struct {
|
||||
OriginalContextLen uint32
|
||||
}
|
||||
|
||||
// RopeOption defines a function that modifies RopeOpts
|
||||
type RopeOption func(*RopeOptions)
|
||||
|
||||
// WithContextLen sets a custom context length
|
||||
func WithContextLen(len uint32) RopeOption {
|
||||
return func(opts *RopeOptions) {
|
||||
opts.OriginalContextLen = len
|
||||
}
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
Dim(n int) int
|
||||
Stride(n int) int
|
||||
@@ -155,7 +140,6 @@ type Tensor interface {
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32, options ...RopeOption) Tensor
|
||||
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
Sin(ctx Context) Tensor
|
||||
|
@@ -30,6 +30,7 @@ import (
|
||||
"github.com/ollama/ollama/logutil"
|
||||
"github.com/ollama/ollama/ml"
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
@@ -1074,28 +1075,15 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
ropeTypeNorm C.int = 0
|
||||
ropeTypeNeox C.int = 2
|
||||
ropeTypeMrope C.int = 8
|
||||
ropeTypeVision C.int = 24
|
||||
)
|
||||
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32, options ...ml.RopeOption) ml.Tensor {
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
|
||||
// Default options
|
||||
opts := &ml.RopeOptions{
|
||||
OriginalContextLen: 131072,
|
||||
}
|
||||
opts := &rope.Options{OriginalContextLength: 131072, Factors: &Tensor{}}
|
||||
|
||||
// Apply any provided options
|
||||
for _, option := range options {
|
||||
option(opts)
|
||||
}
|
||||
|
||||
if ropeFactors == nil {
|
||||
ropeFactors = &Tensor{b: t.b}
|
||||
}
|
||||
|
||||
dequant := t.t
|
||||
if C.ggml_is_quantized(t.t._type) {
|
||||
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
|
||||
@@ -1106,11 +1094,11 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
||||
t: C.ggml_rope_ext(
|
||||
ctx.(*Context).ctx,
|
||||
dequant,
|
||||
positionIDs.(*Tensor).t,
|
||||
ropeFactors.(*Tensor).t,
|
||||
positions.(*Tensor).t,
|
||||
opts.Factors.(*Tensor).t,
|
||||
C.int(ropeDim),
|
||||
C.int(ropeType),
|
||||
C.int(opts.OriginalContextLen),
|
||||
C.int(opts.Type),
|
||||
C.int(opts.OriginalContextLength),
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
C.float(0.0),
|
||||
|
21
ml/nn/fast/rope.go
Normal file
21
ml/nn/fast/rope.go
Normal file
@@ -0,0 +1,21 @@
|
||||
// fast provides implementations of fast (fused) operations for increased performance.
|
||||
package fast
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
)
|
||||
|
||||
// fastRoPE is an interface for tensors that support fast rotary positional embedding.
|
||||
type fastRoPE interface {
|
||||
RoPE(ctx ml.Context, positionIDs ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor
|
||||
}
|
||||
|
||||
// RoPE applies rotary positional embedding to tensor `t`.
|
||||
func RoPE(ctx ml.Context, t, positions ml.Tensor, dim int, base, scale float32, options ...func(*rope.Options)) ml.Tensor {
|
||||
if t, ok := t.(fastRoPE); ok {
|
||||
return t.RoPE(ctx, positions, dim, base, scale, options...)
|
||||
}
|
||||
|
||||
panic("RoPE not implemented for this tensor type")
|
||||
}
|
33
ml/nn/rope/rope.go
Normal file
33
ml/nn/rope/rope.go
Normal file
@@ -0,0 +1,33 @@
|
||||
package rope
|
||||
|
||||
import "github.com/ollama/ollama/ml"
|
||||
|
||||
// Options contains optional parameters for RoPE function
|
||||
type Options struct {
|
||||
OriginalContextLength int
|
||||
Type int
|
||||
Factors ml.Tensor
|
||||
}
|
||||
|
||||
// WithOriginalContextLength sets a custom context length
|
||||
func WithOriginalContextLength(n int) func(*Options) {
|
||||
return func(opts *Options) {
|
||||
opts.OriginalContextLength = n
|
||||
}
|
||||
}
|
||||
|
||||
// WithType sets RoPE type to NeoX
|
||||
func WithTypeNeoX() func(*Options) {
|
||||
return func(opts *Options) {
|
||||
opts.Type = 2
|
||||
}
|
||||
}
|
||||
|
||||
// WithFactors sets custom rope factors
|
||||
func WithFactors(factors ml.Tensor) func(*Options) {
|
||||
return func(opts *Options) {
|
||||
if factors != nil {
|
||||
opts.Factors = factors
|
||||
}
|
||||
}
|
||||
}
|
@@ -7,6 +7,8 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
@@ -83,11 +85,10 @@ type SelfAttention struct {
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@@ -97,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@@ -127,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
@@ -7,6 +7,8 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
@@ -73,7 +75,6 @@ type TextSelfAttention struct {
|
||||
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(2)
|
||||
|
||||
ropeBase := opts.ropeLocalBase
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
@@ -83,7 +84,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
||||
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
|
||||
q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
||||
|
||||
if opts.largeModelScaling {
|
||||
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
|
||||
@@ -94,7 +95,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
||||
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
|
||||
k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
||||
@@ -112,7 +113,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
|
||||
ropeBase = m.TextConfig.ropeGlobalBase
|
||||
}
|
||||
|
||||
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
|
||||
}
|
||||
|
||||
type TextMLP struct {
|
||||
|
@@ -8,14 +8,16 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
headDim, ropeDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@@ -53,10 +55,10 @@ func New(c fs.Config) (model.Model, error) {
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
ropeDim: int(c.Uint("rope.dimension_count")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -76,15 +78,14 @@ type SelfAttention struct {
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
||||
ropeType := uint32(0)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -97,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
|
@@ -8,6 +8,8 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
@@ -31,8 +33,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
if useRope {
|
||||
query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
|
||||
key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
|
||||
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
}
|
||||
|
||||
if opts.useQKNorm {
|
||||
@@ -250,5 +252,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
|
||||
}
|
||||
|
@@ -8,13 +8,14 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
headDim, ropeDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
@@ -35,16 +36,15 @@ type SelfAttention struct {
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(0)
|
||||
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -55,7 +55,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
}
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
@@ -129,10 +129,10 @@ func newTextModel(c fs.Config) *TextModel {
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
ropeDim: int(c.Uint("rope.dimension_count")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
@@ -8,6 +8,8 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
)
|
||||
|
||||
type TextSelfAttention struct {
|
||||
@@ -21,15 +23,14 @@ type TextSelfAttention struct {
|
||||
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
headDim := opts.hiddenSize / opts.numHeads
|
||||
ropeType := uint32(0)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
query = query.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
key = key.RoPE(ctx, positions, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -44,7 +45,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
// This will only get called for layers in the cache, which are just the self attention layers
|
||||
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
|
||||
return key.RoPE(ctx, shift, sa.SelfAttention.RopeFactors, m.ropeDim, uint32(0), m.ropeBase, m.ropeScale), nil
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
|
||||
}
|
||||
|
||||
return key, nil
|
||||
@@ -199,8 +200,8 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs,
|
||||
|
||||
type TextModelOptions struct {
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
ropeDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
|
||||
crossAttentionLayers []int32
|
||||
}
|
||||
@@ -240,10 +241,10 @@ func newTextModel(c fs.Config) *TextModel {
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
ropeDim: int(c.Uint("rope.dimension_count")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
|
||||
},
|
||||
}
|
||||
|
@@ -7,13 +7,15 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type TextOptions struct {
|
||||
ctxLen, hiddenSize, numHeads, numKVHeads int
|
||||
hiddenSize, numHeads, numKVHeads int
|
||||
ropeDim, originalContextLength int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim, defaultContextLen uint32
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
@@ -29,15 +31,14 @@ func NewTextModel(c fs.Config) *TextModel {
|
||||
m := TextModel{
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
TextOptions: &TextOptions{
|
||||
ctxLen: int(c.Uint("context_length")),
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
ropeDim: int(c.Uint("rope.dimension_count", 128)),
|
||||
originalContextLength: int(c.Uint("context_length", 128000)),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count", 128),
|
||||
defaultContextLen: c.Uint("context_length", 128000),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -59,11 +60,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
|
||||
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
|
||||
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, 2, opts.ropeBase, opts.ropeScale, ml.WithContextLen(opts.defaultContextLen))
|
||||
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
|
||||
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
@@ -77,7 +78,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
||||
|
||||
// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, nil, m.ropeDim, 2, m.ropeBase, m.ropeScale, ml.WithContextLen(m.defaultContextLen)), nil
|
||||
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
|
||||
}
|
||||
|
||||
// MLP implements the feed-forward network component with SwiGLU activation
|
||||
|
Reference in New Issue
Block a user