Remove submodule and shift to Go server - 0.4.0 (#7157)

* Remove llama.cpp submodule and shift new build to top

* CI: install msys and clang gcc on win

Needed for deepseek to work properly on windows
This commit is contained in:
Daniel Hiltgen
2024-10-30 10:34:28 -07:00
committed by GitHub
parent a805e5947e
commit b754f5a6a3
40 changed files with 366 additions and 15260 deletions

View File

@@ -1,183 +1,5 @@
# Development
> [!IMPORTANT]
> The `llm` package that loads and runs models is being updated to use a new [Go runner](#transition-to-go-runner): this should only impact a small set of PRs however it does change how the project is built.
Install required tools:
- cmake version 3.24 or higher
- go version 1.22 or higher
- gcc version 11.4.0 or higher
### MacOS
```bash
brew install go cmake gcc
```
Optionally enable debugging and more verbose logging:
```bash
# At build time
export CGO_CFLAGS="-g"
# At runtime
export OLLAMA_DEBUG=1
```
Get the required libraries and build the native LLM code:
```bash
go generate ./...
```
Then build ollama:
```bash
go build .
```
Now you can run `ollama`:
```bash
./ollama
```
### Linux
#### Linux CUDA (NVIDIA)
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install `cmake` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
development and runtime packages.
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
Then generate dependencies:
```
go generate ./...
```
Then build the binary:
```
go build .
```
#### Linux ROCm (AMD)
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `cmake` and `golang`.
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
or installation approach uses unusual paths, you can specify the location by
specifying an environment variable `ROCM_PATH` to the location of the ROCm
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
```
go generate ./...
```
Then build the binary:
```
go build .
```
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
go build .
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
### Windows
Note: The Windows build for Ollama is still under development.
First, install required tools:
- MSVC toolchain - C/C++ and cmake as minimal requirements
- Go version 1.22 or higher
- MinGW (pick one variant) with GCC.
- [MinGW-w64](https://www.mingw-w64.org/)
- [MSYS2](https://www.msys2.org/)
- The `ThreadJob` Powershell module: `Install-Module -Name ThreadJob -Scope CurrentUser`
Then, build the `ollama` binary:
```powershell
$env:CGO_ENABLED="1"
go generate ./...
go build .
```
#### Windows CUDA (NVIDIA)
In addition to the common Windows development tools described above, install CUDA after installing MSVC.
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
#### Windows ROCm (AMD Radeon)
In addition to the common Windows development tools described above, install AMDs HIP package after installing MSVC.
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
- [Strawberry Perl](https://strawberryperl.com/)
Lastly, add `ninja.exe` included with MSVC to the system path (e.g. `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\Ninja`).
#### Windows arm64
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
```powershell
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
```
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
```
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
```
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
## Transition to Go runner
The Ollama team is working on moving to a new Go based runner that loads and runs models in a subprocess to replace the previous code under `ext_server`. During this transition period, this new Go runner is "opt in" at build time, and requires using a different approach to build.
After the transition to use the Go server exclusively, both `make` and `go generate` will build the Go runner.
Install required tools:
- go version 1.22 or higher
@@ -201,7 +23,7 @@ export OLLAMA_DEBUG=1
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
```bash
make -C llama -j 5
make -j 5
```
Then build ollama:
@@ -238,7 +60,7 @@ a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
```
make -C llama -j 5
make -j 5
```
Then build the binary:
@@ -263,7 +85,7 @@ the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
```
make -C llama -j 5
make -j 5
```
Then build the binary:
@@ -308,7 +130,7 @@ Then, build the `ollama` binary:
```powershell
$env:CGO_ENABLED="1"
make -C llama -j 8
make -j 8
go build .
```