mirror of
https://github.com/ollama/ollama.git
synced 2025-04-15 07:09:23 +02:00
merge ggml file decoding
This commit is contained in:
parent
2c5fb24855
commit
b7943d941d
@ -9,7 +9,7 @@ import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
@ -27,8 +27,8 @@ type AdapterParameters struct {
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||
kv := ggml.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
"tokenizer.ggml.pre": t.Pre,
|
||||
@ -54,7 +54,7 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
func (p AdapterParameters) KV() ggml.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
@ -62,7 +62,7 @@ func (p AdapterParameters) KV() llm.KV {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
kv := ggml.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
@ -79,19 +79,19 @@ func (ModelParameters) specialTokenTypes() []string {
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
KV(*Tokenizer) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
@ -99,7 +99,7 @@ type ModelConverter interface {
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
@ -108,17 +108,17 @@ type moreParser interface {
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
KV(ggml.KV) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
|
@ -8,7 +8,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemmaModel struct {
|
||||
@ -23,7 +23,7 @@ type gemmaModel struct {
|
||||
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@ -1,8 +1,6 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type gemma2Model struct {
|
||||
gemmaModel
|
||||
@ -11,7 +9,7 @@ type gemma2Model struct {
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
|
@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@ -9,7 +9,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaModel struct {
|
||||
@ -46,7 +46,7 @@ type llamaModel struct {
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
@ -120,11 +120,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@ -138,7 +138,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@ -7,7 +7,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
@ -18,7 +18,7 @@ type llamaAdapter struct {
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
@ -6,7 +6,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mixtralModel struct {
|
||||
@ -15,7 +15,7 @@ type mixtralModel struct {
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return true
|
||||
})
|
||||
|
||||
var out []llm.Tensor
|
||||
var out []ggml.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
@ -8,7 +8,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type phi3Model struct {
|
||||
@ -37,7 +37,7 @@ type phi3Model struct {
|
||||
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
out := make([]ggml.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, llm.Tensor{
|
||||
}, ggml.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
@ -20,7 +20,7 @@ import (
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type tensorData struct {
|
||||
@ -29,7 +29,7 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
@ -48,7 +48,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@ -60,7 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
@ -330,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
265
fs/ggml/ggml.go
265
fs/ggml/ggml.go
@ -1,12 +1,12 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/util/bufioutil"
|
||||
@ -25,7 +25,15 @@ type model interface {
|
||||
type KV map[string]any
|
||||
|
||||
func (kv KV) Architecture() string {
|
||||
return cmp.Or(kv.String("general.architecture"), "unknown")
|
||||
return kv.String("general.architecture", "unknown")
|
||||
}
|
||||
|
||||
func (kv KV) Kind() string {
|
||||
return kv.String("general.kind", "unknown")
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return keyValue[uint64](kv, "general.parameter_count")
|
||||
}
|
||||
|
||||
func (kv KV) FileType() fileType {
|
||||
@ -36,6 +44,50 @@ func (kv KV) FileType() fileType {
|
||||
return fileTypeUnknown
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
return uint64(kv.Uint("block_count"))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingLength() uint64 {
|
||||
return uint64(kv.Uint("embedding_length"))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCount() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count"))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count_kv", 1))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCount() uint64 {
|
||||
if heads := kv.HeadCount(); heads > 0 {
|
||||
return kv.EmbeddingLength() / heads
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountK() uint64 {
|
||||
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountV() uint64 {
|
||||
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
|
||||
}
|
||||
|
||||
func (kv KV) GQA() uint64 {
|
||||
return kv.HeadCount() / kv.HeadCountKV()
|
||||
}
|
||||
|
||||
func (kv KV) ContextLength() uint64 {
|
||||
return uint64(kv.Uint("context_length"))
|
||||
}
|
||||
|
||||
func (kv KV) ChatTemplate() string {
|
||||
return kv.String("tokenizer.chat_template")
|
||||
}
|
||||
|
||||
func (kv KV) String(key string, defaultValue ...string) string {
|
||||
return keyValue(kv, key, append(defaultValue, "")...)
|
||||
}
|
||||
@ -68,7 +120,7 @@ func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
return s
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | float32 | *array](kv KV, key string, defaultValue ...T) T {
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
@ -107,7 +159,7 @@ func (ts Tensors) Layers() map[string]Layer {
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
||||
func (l Layer) size() (size uint64) {
|
||||
func (l Layer) Size() (size uint64) {
|
||||
for _, t := range l {
|
||||
size += t.Size()
|
||||
}
|
||||
@ -243,7 +295,7 @@ const (
|
||||
|
||||
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
||||
|
||||
func DetectGGMLType(b []byte) string {
|
||||
func DetectContentType(b []byte) string {
|
||||
switch binary.LittleEndian.Uint32(b[:4]) {
|
||||
case FILE_MAGIC_GGML:
|
||||
return "ggml"
|
||||
@ -260,12 +312,12 @@ func DetectGGMLType(b []byte) string {
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeGGML decodes a GGML model from the given reader.
|
||||
// Decode decodes a GGML model from the given reader.
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
||||
// the maxArraySize is negative, all arrays are collected.
|
||||
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
if maxArraySize == 0 {
|
||||
maxArraySize = 1024
|
||||
}
|
||||
@ -303,3 +355,202 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
model: model,
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
|
||||
embedding := llm.KV().EmbeddingLength()
|
||||
heads := llm.KV().HeadCount()
|
||||
headsKV := llm.KV().HeadCountKV()
|
||||
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
|
||||
|
||||
embeddingHeads := llm.KV().EmbeddingHeadCount()
|
||||
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
|
||||
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
|
||||
|
||||
layers := llm.Tensors().Layers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "llama":
|
||||
fullOffload = max(
|
||||
4*batch*(1+4*embedding+context*(1+heads)),
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
|
||||
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
||||
// mixtral 8x22b
|
||||
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
|
||||
partialOffload = max(
|
||||
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
||||
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
||||
)
|
||||
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
||||
// mixtral 8x7b
|
||||
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
||||
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
||||
partialOffload = max(
|
||||
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
||||
)
|
||||
}
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.parameters()
|
||||
}
|
||||
}
|
||||
|
||||
partialOffload = max(
|
||||
4*(batch*
|
||||
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
|
||||
ropeFreqsCount+
|
||||
embeddingHeadsK*context*headsKV),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+4*embedding+context*(1+heads)),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
||||
)
|
||||
case "qwen2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+2*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
||||
)
|
||||
case "phi2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+4*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2+3*embedding+context+context*heads),
|
||||
)
|
||||
case "stablelm":
|
||||
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
||||
partialOffload = max(
|
||||
4*batch*(vocab+2*embedding),
|
||||
fullOffload,
|
||||
)
|
||||
case "deepseek2":
|
||||
fullOffload = max(
|
||||
4*batch*(3*embedding+vocab),
|
||||
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
||||
)
|
||||
case "chatglm":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
||||
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
||||
fullOffload = max(
|
||||
fullOffload,
|
||||
4*batch*(2+
|
||||
2*embedding+
|
||||
context+
|
||||
context*heads+
|
||||
embeddingHeadsK*heads+
|
||||
qkvBias.Shape[0]),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
partialOffload,
|
||||
4*batch*(1+
|
||||
2*embedding+
|
||||
embeddingHeadsK*heads+
|
||||
context+
|
||||
context*heads)+
|
||||
4*embeddingHeadsK*context+
|
||||
4*context*embeddingHeadsK+
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (llm GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
}
|
||||
|
||||
// SupportsFlashAttention checks if the model supports flash attention
|
||||
func (llm GGML) SupportsFlashAttention() bool {
|
||||
_, isEmbedding := llm.KV()[fmt.Sprintf("%s.pooling_type", llm.KV().Architecture())]
|
||||
if isEmbedding {
|
||||
return false
|
||||
}
|
||||
|
||||
// Check head counts match and are non-zero
|
||||
headCountK := llm.KV().EmbeddingHeadCountK()
|
||||
headCountV := llm.KV().EmbeddingHeadCountV()
|
||||
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
|
||||
}
|
||||
|
||||
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
|
||||
func kvCacheBytesPerElement(cacheType string) float64 {
|
||||
switch cacheType {
|
||||
case "q8_0":
|
||||
return 1 // 1/2 of fp16
|
||||
case "q4_0":
|
||||
return 0.5 // 1/4 of fp16
|
||||
default:
|
||||
return 2 // f16 (default)
|
||||
}
|
||||
}
|
||||
|
185
llm/filetype.go
185
llm/filetype.go
@ -1,185 +0,0 @@
|
||||
package llm
|
||||
|
||||
import "fmt"
|
||||
|
||||
type fileType uint32
|
||||
|
||||
const (
|
||||
fileTypeF32 fileType = iota
|
||||
fileTypeF16
|
||||
fileTypeQ4_0
|
||||
fileTypeQ4_1
|
||||
fileTypeQ4_1_F16
|
||||
fileTypeQ4_2 // unused
|
||||
fileTypeQ4_3 // unused
|
||||
fileTypeQ8_0
|
||||
fileTypeQ5_0
|
||||
fileTypeQ5_1
|
||||
fileTypeQ2_K
|
||||
fileTypeQ3_K_S
|
||||
fileTypeQ3_K_M
|
||||
fileTypeQ3_K_L
|
||||
fileTypeQ4_K_S
|
||||
fileTypeQ4_K_M
|
||||
fileTypeQ5_K_S
|
||||
fileTypeQ5_K_M
|
||||
fileTypeQ6_K
|
||||
fileTypeIQ2_XXS
|
||||
fileTypeIQ2_XS
|
||||
fileTypeQ2_K_S
|
||||
fileTypeIQ3_XS
|
||||
fileTypeIQ3_XXS
|
||||
fileTypeIQ1_S
|
||||
fileTypeIQ4_NL
|
||||
fileTypeIQ3_S
|
||||
fileTypeIQ3_M
|
||||
fileTypeIQ2_S
|
||||
fileTypeIQ2_M
|
||||
fileTypeIQ4_XS
|
||||
fileTypeIQ1_M
|
||||
fileTypeBF16
|
||||
|
||||
fileTypeUnknown
|
||||
)
|
||||
|
||||
func ParseFileType(s string) (fileType, error) {
|
||||
switch s {
|
||||
case "F32":
|
||||
return fileTypeF32, nil
|
||||
case "F16":
|
||||
return fileTypeF16, nil
|
||||
case "Q4_0":
|
||||
return fileTypeQ4_0, nil
|
||||
case "Q4_1":
|
||||
return fileTypeQ4_1, nil
|
||||
case "Q4_1_F16":
|
||||
return fileTypeQ4_1_F16, nil
|
||||
case "Q8_0":
|
||||
return fileTypeQ8_0, nil
|
||||
case "Q5_0":
|
||||
return fileTypeQ5_0, nil
|
||||
case "Q5_1":
|
||||
return fileTypeQ5_1, nil
|
||||
case "Q2_K":
|
||||
return fileTypeQ2_K, nil
|
||||
case "Q3_K_S":
|
||||
return fileTypeQ3_K_S, nil
|
||||
case "Q3_K_M":
|
||||
return fileTypeQ3_K_M, nil
|
||||
case "Q3_K_L":
|
||||
return fileTypeQ3_K_L, nil
|
||||
case "Q4_K_S":
|
||||
return fileTypeQ4_K_S, nil
|
||||
case "Q4_K_M":
|
||||
return fileTypeQ4_K_M, nil
|
||||
case "Q5_K_S":
|
||||
return fileTypeQ5_K_S, nil
|
||||
case "Q5_K_M":
|
||||
return fileTypeQ5_K_M, nil
|
||||
case "Q6_K":
|
||||
return fileTypeQ6_K, nil
|
||||
case "IQ2_XXS":
|
||||
return fileTypeIQ2_XXS, nil
|
||||
case "IQ2_XS":
|
||||
return fileTypeIQ2_XS, nil
|
||||
case "Q2_K_S":
|
||||
return fileTypeQ2_K_S, nil
|
||||
case "IQ3_XS":
|
||||
return fileTypeIQ3_XS, nil
|
||||
case "IQ3_XXS":
|
||||
return fileTypeIQ3_XXS, nil
|
||||
case "IQ1_S":
|
||||
return fileTypeIQ1_S, nil
|
||||
case "IQ4_NL":
|
||||
return fileTypeIQ4_NL, nil
|
||||
case "IQ3_S":
|
||||
return fileTypeIQ3_S, nil
|
||||
case "IQ3_M":
|
||||
return fileTypeIQ3_M, nil
|
||||
case "IQ2_S":
|
||||
return fileTypeIQ2_S, nil
|
||||
case "IQ4_XS":
|
||||
return fileTypeIQ4_XS, nil
|
||||
case "IQ2_M":
|
||||
return fileTypeIQ2_M, nil
|
||||
case "IQ1_M":
|
||||
return fileTypeIQ1_M, nil
|
||||
case "BF16":
|
||||
return fileTypeBF16, nil
|
||||
default:
|
||||
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
|
||||
}
|
||||
}
|
||||
|
||||
func (t fileType) String() string {
|
||||
switch t {
|
||||
case fileTypeF32:
|
||||
return "F32"
|
||||
case fileTypeF16:
|
||||
return "F16"
|
||||
case fileTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case fileTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case fileTypeQ4_1_F16:
|
||||
return "Q4_1_F16"
|
||||
case fileTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case fileTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case fileTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case fileTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case fileTypeQ3_K_S:
|
||||
return "Q3_K_S"
|
||||
case fileTypeQ3_K_M:
|
||||
return "Q3_K_M"
|
||||
case fileTypeQ3_K_L:
|
||||
return "Q3_K_L"
|
||||
case fileTypeQ4_K_S:
|
||||
return "Q4_K_S"
|
||||
case fileTypeQ4_K_M:
|
||||
return "Q4_K_M"
|
||||
case fileTypeQ5_K_S:
|
||||
return "Q5_K_S"
|
||||
case fileTypeQ5_K_M:
|
||||
return "Q5_K_M"
|
||||
case fileTypeQ6_K:
|
||||
return "Q6_K"
|
||||
case fileTypeIQ2_XXS:
|
||||
return "IQ2_XXS"
|
||||
case fileTypeIQ2_XS:
|
||||
return "IQ2_XS"
|
||||
case fileTypeQ2_K_S:
|
||||
return "Q2_K_S"
|
||||
case fileTypeIQ3_XS:
|
||||
return "IQ3_XS"
|
||||
case fileTypeIQ3_XXS:
|
||||
return "IQ3_XXS"
|
||||
case fileTypeIQ1_S:
|
||||
return "IQ1_S"
|
||||
case fileTypeIQ4_NL:
|
||||
return "IQ4_NL"
|
||||
case fileTypeIQ3_S:
|
||||
return "IQ3_S"
|
||||
case fileTypeIQ3_M:
|
||||
return "IQ3_M"
|
||||
case fileTypeIQ2_S:
|
||||
return "IQ2_S"
|
||||
case fileTypeIQ4_XS:
|
||||
return "IQ4_XS"
|
||||
case fileTypeIQ2_M:
|
||||
return "IQ2_M"
|
||||
case fileTypeIQ1_M:
|
||||
return "IQ1_M"
|
||||
case fileTypeBF16:
|
||||
return "BF16"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (t fileType) Value() uint32 {
|
||||
return uint32(t)
|
||||
}
|
149
llm/ggla.go
149
llm/ggla.go
@ -1,149 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
"slices"
|
||||
)
|
||||
|
||||
type containerGGLA struct {
|
||||
version uint32
|
||||
}
|
||||
|
||||
func (c *containerGGLA) Name() string {
|
||||
return "ggla"
|
||||
}
|
||||
|
||||
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
|
||||
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch c.version {
|
||||
case 1:
|
||||
default:
|
||||
return nil, errors.New("invalid version")
|
||||
}
|
||||
|
||||
model := newGGLA(c)
|
||||
err := model.decode(rs)
|
||||
return model, err
|
||||
}
|
||||
|
||||
type ggla struct {
|
||||
*containerGGLA
|
||||
|
||||
kv KV
|
||||
tensors []*Tensor
|
||||
|
||||
tensorOffset uint64
|
||||
}
|
||||
|
||||
func newGGLA(container *containerGGLA) *ggla {
|
||||
return &ggla{
|
||||
containerGGLA: container,
|
||||
kv: make(KV),
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *ggla) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *ggla) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
|
||||
var r uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
|
||||
return err
|
||||
}
|
||||
llm.kv["r"] = r
|
||||
|
||||
var alpha uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &alpha); err != nil {
|
||||
return err
|
||||
}
|
||||
llm.kv["alpha"] = alpha
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
llm.tensorOffset = uint64(offset)
|
||||
|
||||
for {
|
||||
var dims uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
|
||||
if errors.Is(err, io.EOF) {
|
||||
return nil
|
||||
}
|
||||
return err
|
||||
}
|
||||
|
||||
defer func() {
|
||||
if errors.Is(retErr, io.EOF) {
|
||||
retErr = io.ErrUnexpectedEOF
|
||||
}
|
||||
}()
|
||||
|
||||
var namesize uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var t Tensor
|
||||
if err := binary.Read(rs, binary.LittleEndian, &t.Kind); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t.Shape = make([]uint64, dims)
|
||||
for i := 0; uint32(i) < dims; i++ {
|
||||
var shape32 uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &shape32); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t.Shape[i] = uint64(shape32)
|
||||
}
|
||||
|
||||
// ggla tensor shape is reversed
|
||||
// ref: https://github.com/ggerganov/llama.cpp/blob/29ae62d2ae163e2b68aa0ad3bf2ab4636de0c957/convert-lora-to-ggml.py#L44
|
||||
slices.Reverse(t.Shape)
|
||||
|
||||
name := make([]byte, namesize)
|
||||
if err := binary.Read(rs, binary.LittleEndian, &name); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t.Name = string(name)
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
offset, err = rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t.Offset = uint64(offset)
|
||||
|
||||
if _, err := rs.Seek(int64(t.Size()), io.SeekCurrent); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
llm.tensors = append(llm.tensors, &t)
|
||||
}
|
||||
}
|
561
llm/ggml.go
561
llm/ggml.go
@ -1,561 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs/util/bufioutil"
|
||||
)
|
||||
|
||||
type GGML struct {
|
||||
container
|
||||
model
|
||||
}
|
||||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() *Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
|
||||
func (kv KV) u64(key string) uint64 {
|
||||
switch v := kv[key].(type) {
|
||||
case uint64:
|
||||
return v
|
||||
case uint32:
|
||||
return uint64(v)
|
||||
case float64:
|
||||
return uint64(v)
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (kv KV) Architecture() string {
|
||||
if s, ok := kv["general.architecture"].(string); ok {
|
||||
return s
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) Kind() string {
|
||||
if s, ok := kv["general.type"].(string); ok {
|
||||
return s
|
||||
}
|
||||
|
||||
return "unknown"
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return kv.u64("general.parameter_count")
|
||||
}
|
||||
|
||||
func (kv KV) FileType() fileType {
|
||||
if u64 := kv.u64("general.file_type"); u64 > 0 {
|
||||
return fileType(uint32(u64))
|
||||
}
|
||||
|
||||
return fileTypeUnknown
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCount() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() uint64 {
|
||||
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
|
||||
return headCountKV
|
||||
}
|
||||
|
||||
return 1
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCount() uint64 {
|
||||
if heads := kv.HeadCount(); heads > 0 {
|
||||
return kv.EmbeddingLength() / kv.HeadCount()
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountK() uint64 {
|
||||
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
|
||||
return k
|
||||
}
|
||||
|
||||
return kv.EmbeddingHeadCount()
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountV() uint64 {
|
||||
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
|
||||
return v
|
||||
}
|
||||
|
||||
return kv.EmbeddingHeadCount()
|
||||
}
|
||||
|
||||
func (kv KV) GQA() uint64 {
|
||||
return kv.HeadCount() / kv.HeadCountKV()
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingLength() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) ContextLength() uint64 {
|
||||
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
|
||||
}
|
||||
|
||||
func (kv KV) ChatTemplate() string {
|
||||
s, _ := kv["tokenizer.chat_template"].(string)
|
||||
return s
|
||||
}
|
||||
|
||||
type Tensors struct {
|
||||
Items []*Tensor
|
||||
Offset uint64
|
||||
|
||||
layers map[string]Layer
|
||||
layersOnce sync.Once
|
||||
}
|
||||
|
||||
func (ts *Tensors) Layers() map[string]Layer {
|
||||
ts.layersOnce.Do(func() {
|
||||
ts.layers = make(map[string]Layer)
|
||||
for _, t := range ts.Items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
||||
if len(parts) > index+2 {
|
||||
// blk and mm should have a number after them, join it
|
||||
parts = append(
|
||||
[]string{strings.Join(parts[:index+2], ".")},
|
||||
parts[index+2:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if _, ok := ts.layers[parts[0]]; !ok {
|
||||
ts.layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
})
|
||||
|
||||
return ts.layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
||||
func (l Layer) size() (size uint64) {
|
||||
for _, t := range l {
|
||||
size += t.Size()
|
||||
}
|
||||
|
||||
return size
|
||||
}
|
||||
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Kind uint32 `json:"kind"`
|
||||
Offset uint64 `json:"-"`
|
||||
|
||||
// Shape is the number of elements in each dimension
|
||||
Shape []uint64 `json:"shape"`
|
||||
|
||||
io.WriterTo `json:"-"`
|
||||
}
|
||||
|
||||
func (t Tensor) block() (n int) {
|
||||
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
|
||||
return -1
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
switch t.Kind {
|
||||
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
|
||||
return 1
|
||||
case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
|
||||
return 32
|
||||
default: // All others
|
||||
return 256
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) typeSize() uint64 {
|
||||
blockSize := t.blockSize()
|
||||
|
||||
switch t.Kind {
|
||||
case 0: // FP32
|
||||
return 4
|
||||
case 1: // FP16
|
||||
return 2
|
||||
case 2: // Q4_0
|
||||
return 2 + blockSize/2
|
||||
case 3: // Q4_1
|
||||
return 2 + 2 + blockSize/2
|
||||
case 6: // Q5_0
|
||||
return 2 + 4 + blockSize/2
|
||||
case 7: // Q5_1
|
||||
return 2 + 2 + 4 + blockSize/2
|
||||
case 8: // Q8_0
|
||||
return 2 + blockSize
|
||||
case 9: // Q8_1
|
||||
return 4 + 4 + blockSize
|
||||
case 10: // Q2_K
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case 11: // Q3_K
|
||||
return blockSize/8 + blockSize/4 + 12 + 2
|
||||
case 12: // Q4_K
|
||||
return 2 + 2 + 12 + blockSize/2
|
||||
case 13: // Q5_K
|
||||
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
||||
case 14: // Q6_K
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case 15: // Q8_K
|
||||
return 2 + blockSize + 2*blockSize/16
|
||||
case 16: // IQ2_XXS
|
||||
return 2 + 2*blockSize/8
|
||||
case 17: // IQ2_XS
|
||||
return 2 + 2*blockSize/8 + blockSize/32
|
||||
case 18: // IQ3_XXS
|
||||
return 2 + blockSize/4 + blockSize/8
|
||||
case 19: // IQ1_S
|
||||
return 2 + blockSize/8 + blockSize/16
|
||||
case 20: // IQ4_NL
|
||||
return 2 + blockSize/2
|
||||
case 21: // IQ3_S
|
||||
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
||||
case 22: // IQ2_S
|
||||
return 2 + blockSize/4 + blockSize/16
|
||||
case 23: // IQ4_XS
|
||||
return 2 + 2 + blockSize/2 + blockSize/64
|
||||
case 24: // I8
|
||||
return 1
|
||||
case 25: // I16
|
||||
return 2
|
||||
case 26: // I32
|
||||
return 4
|
||||
case 27: // I64
|
||||
return 8
|
||||
case 28: // F64
|
||||
return 8
|
||||
case 29: // IQ1_M
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case 30: // BF16
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) parameters() uint64 {
|
||||
var count uint64 = 1
|
||||
for _, n := range t.Shape {
|
||||
count *= n
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
func (t Tensor) Size() uint64 {
|
||||
return t.parameters() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
Name() string
|
||||
Decode(io.ReadSeeker) (model, error)
|
||||
}
|
||||
|
||||
const (
|
||||
// Magic constant for `ggml` files (unversioned).
|
||||
FILE_MAGIC_GGML = 0x67676d6c
|
||||
// Magic constant for `ggml` files (versioned, ggmf).
|
||||
FILE_MAGIC_GGMF = 0x67676d66
|
||||
// Magic constant for `ggml` files (versioned, ggjt).
|
||||
FILE_MAGIC_GGJT = 0x67676a74
|
||||
// Magic constant for `ggla` files (LoRA adapter).
|
||||
FILE_MAGIC_GGLA = 0x67676C61
|
||||
// Magic constant for `gguf` files (versioned, gguf)
|
||||
FILE_MAGIC_GGUF_LE = 0x46554747
|
||||
FILE_MAGIC_GGUF_BE = 0x47475546
|
||||
)
|
||||
|
||||
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
||||
|
||||
func DetectGGMLType(b []byte) string {
|
||||
switch binary.LittleEndian.Uint32(b[:4]) {
|
||||
case FILE_MAGIC_GGML:
|
||||
return "ggml"
|
||||
case FILE_MAGIC_GGMF:
|
||||
return "ggmf"
|
||||
case FILE_MAGIC_GGJT:
|
||||
return "ggjt"
|
||||
case FILE_MAGIC_GGLA:
|
||||
return "ggla"
|
||||
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
|
||||
return "gguf"
|
||||
default:
|
||||
return ""
|
||||
}
|
||||
}
|
||||
|
||||
// DecodeGGML decodes a GGML model from the given reader.
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
||||
// the maxArraySize is negative, all arrays are collected.
|
||||
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
if maxArraySize == 0 {
|
||||
maxArraySize = 1024
|
||||
}
|
||||
|
||||
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
||||
|
||||
var magic uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var c container
|
||||
switch magic {
|
||||
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
|
||||
return nil, 0, ErrUnsupportedFormat
|
||||
case FILE_MAGIC_GGLA:
|
||||
c = &containerGGLA{}
|
||||
case FILE_MAGIC_GGUF_LE:
|
||||
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
|
||||
case FILE_MAGIC_GGUF_BE:
|
||||
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
||||
default:
|
||||
return nil, 0, errors.New("invalid file magic")
|
||||
}
|
||||
|
||||
model, err := c.Decode(rs)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
// final model type
|
||||
return &GGML{
|
||||
container: c,
|
||||
model: model,
|
||||
}, offset, nil
|
||||
}
|
||||
|
||||
func (llm GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
|
||||
embedding := llm.KV().EmbeddingLength()
|
||||
heads := llm.KV().HeadCount()
|
||||
headsKV := llm.KV().HeadCountKV()
|
||||
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
|
||||
|
||||
embeddingHeads := llm.KV().EmbeddingHeadCount()
|
||||
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
|
||||
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
|
||||
|
||||
layers := llm.Tensors().Layers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = uint64(float64(context*llm.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "llama":
|
||||
fullOffload = max(
|
||||
4*batch*(1+4*embedding+context*(1+heads)),
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
|
||||
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
||||
// mixtral 8x22b
|
||||
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
|
||||
partialOffload = max(
|
||||
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
||||
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
||||
)
|
||||
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
||||
// mixtral 8x7b
|
||||
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
||||
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
||||
partialOffload = max(
|
||||
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
||||
)
|
||||
}
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.parameters()
|
||||
}
|
||||
}
|
||||
|
||||
partialOffload = max(
|
||||
4*(batch*
|
||||
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
|
||||
ropeFreqsCount+
|
||||
embeddingHeadsK*context*headsKV),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+4*embedding+context*(1+heads)),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
||||
)
|
||||
case "qwen2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+2*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
||||
)
|
||||
case "phi2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+4*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2+3*embedding+context+context*heads),
|
||||
)
|
||||
case "stablelm":
|
||||
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
||||
partialOffload = max(
|
||||
4*batch*(vocab+2*embedding),
|
||||
fullOffload,
|
||||
)
|
||||
case "deepseek2":
|
||||
fullOffload = max(
|
||||
4*batch*(3*embedding+vocab),
|
||||
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
||||
)
|
||||
case "chatglm":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
||||
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
||||
fullOffload = max(
|
||||
fullOffload,
|
||||
4*batch*(2+
|
||||
2*embedding+
|
||||
context+
|
||||
context*heads+
|
||||
embeddingHeadsK*heads+
|
||||
qkvBias.Shape[0]),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
partialOffload,
|
||||
4*batch*(1+
|
||||
2*embedding+
|
||||
embeddingHeadsK*heads+
|
||||
context+
|
||||
context*heads)+
|
||||
4*embeddingHeadsK*context+
|
||||
4*context*embeddingHeadsK+
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (ggml GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
validKVCacheTypes := []string{"f16", "q8_0", "q4_0"}
|
||||
return slices.Contains(validKVCacheTypes, cacheType)
|
||||
}
|
||||
|
||||
// SupportsFlashAttention checks if the model supports flash attention
|
||||
func (ggml GGML) SupportsFlashAttention() bool {
|
||||
_, isEmbedding := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]
|
||||
if isEmbedding {
|
||||
return false
|
||||
}
|
||||
|
||||
// Check head counts match and are non-zero
|
||||
headCountK := ggml.KV().EmbeddingHeadCountK()
|
||||
headCountV := ggml.KV().EmbeddingHeadCountV()
|
||||
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
|
||||
}
|
||||
|
||||
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
|
||||
func kvCacheBytesPerElement(cacheType string) float64 {
|
||||
switch cacheType {
|
||||
case "q8_0":
|
||||
return 1 // 1/2 of fp16
|
||||
case "q4_0":
|
||||
return 0.5 // 1/4 of fp16
|
||||
default:
|
||||
return 2 // f16 (default)
|
||||
}
|
||||
}
|
@ -1 +0,0 @@
|
||||
package llm
|
662
llm/gguf.go
662
llm/gguf.go
@ -1,662 +0,0 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
type containerGGUF struct {
|
||||
ByteOrder binary.ByteOrder
|
||||
|
||||
Version uint32
|
||||
|
||||
V1 struct {
|
||||
NumTensor uint32
|
||||
NumKV uint32
|
||||
}
|
||||
|
||||
V2 struct {
|
||||
NumTensor uint64
|
||||
NumKV uint64
|
||||
}
|
||||
|
||||
V3 struct {
|
||||
NumTensor uint64
|
||||
NumKV uint64
|
||||
}
|
||||
|
||||
maxArraySize int
|
||||
}
|
||||
|
||||
func (c *containerGGUF) canCollectArray(size int) bool {
|
||||
return c.maxArraySize < 0 || size <= c.maxArraySize
|
||||
}
|
||||
|
||||
func (c *containerGGUF) Name() string {
|
||||
return "gguf"
|
||||
}
|
||||
|
||||
func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
|
||||
if err := binary.Read(rs, c.ByteOrder, &c.Version); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var err error
|
||||
switch c.Version {
|
||||
case 1:
|
||||
err = binary.Read(rs, c.ByteOrder, &c.V1)
|
||||
case 2:
|
||||
err = binary.Read(rs, c.ByteOrder, &c.V2)
|
||||
default:
|
||||
err = binary.Read(rs, c.ByteOrder, &c.V3)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
model := newGGUF(c)
|
||||
if err := model.Decode(rs); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return model, nil
|
||||
}
|
||||
|
||||
const (
|
||||
ggufTypeUint8 uint32 = iota
|
||||
ggufTypeInt8
|
||||
ggufTypeUint16
|
||||
ggufTypeInt16
|
||||
ggufTypeUint32
|
||||
ggufTypeInt32
|
||||
ggufTypeFloat32
|
||||
ggufTypeBool
|
||||
ggufTypeString
|
||||
ggufTypeArray
|
||||
ggufTypeUint64
|
||||
ggufTypeInt64
|
||||
ggufTypeFloat64
|
||||
)
|
||||
|
||||
type gguf struct {
|
||||
*containerGGUF
|
||||
|
||||
kv KV
|
||||
tensors []*Tensor
|
||||
|
||||
parameters uint64
|
||||
tensorOffset uint64
|
||||
|
||||
scratch [16 << 10]byte
|
||||
}
|
||||
|
||||
func newGGUF(container *containerGGUF) *gguf {
|
||||
return &gguf{
|
||||
containerGGUF: container,
|
||||
kv: make(KV),
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *gguf) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *gguf) numTensor() uint64 {
|
||||
switch llm.Version {
|
||||
case 1:
|
||||
return uint64(llm.V1.NumTensor)
|
||||
case 2:
|
||||
return llm.V2.NumTensor
|
||||
default:
|
||||
return llm.V3.NumTensor
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *gguf) numKV() uint64 {
|
||||
switch llm.Version {
|
||||
case 1:
|
||||
return uint64(llm.V1.NumKV)
|
||||
case 2:
|
||||
return llm.V2.NumKV
|
||||
default:
|
||||
return llm.V3.NumKV
|
||||
}
|
||||
}
|
||||
|
||||
func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
// decode key-values
|
||||
for i := 0; uint64(i) < llm.numKV(); i++ {
|
||||
k, err := readGGUFString(llm, rs)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
t, err := readGGUF[uint32](llm, rs)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var v any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
v, err = readGGUF[uint8](llm, rs)
|
||||
case ggufTypeInt8:
|
||||
v, err = readGGUF[int8](llm, rs)
|
||||
case ggufTypeUint16:
|
||||
v, err = readGGUF[uint16](llm, rs)
|
||||
case ggufTypeInt16:
|
||||
v, err = readGGUF[int16](llm, rs)
|
||||
case ggufTypeUint32:
|
||||
v, err = readGGUF[uint32](llm, rs)
|
||||
case ggufTypeInt32:
|
||||
v, err = readGGUF[int32](llm, rs)
|
||||
case ggufTypeUint64:
|
||||
v, err = readGGUF[uint64](llm, rs)
|
||||
case ggufTypeInt64:
|
||||
v, err = readGGUF[int64](llm, rs)
|
||||
case ggufTypeFloat32:
|
||||
v, err = readGGUF[float32](llm, rs)
|
||||
case ggufTypeFloat64:
|
||||
v, err = readGGUF[float64](llm, rs)
|
||||
case ggufTypeBool:
|
||||
v, err = readGGUF[bool](llm, rs)
|
||||
case ggufTypeString:
|
||||
v, err = readGGUFString(llm, rs)
|
||||
case ggufTypeArray:
|
||||
v, err = readGGUFArray(llm, rs)
|
||||
default:
|
||||
return fmt.Errorf("invalid type: %d", t)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
llm.kv[k] = v
|
||||
}
|
||||
|
||||
// decode tensors
|
||||
for range llm.numTensor() {
|
||||
name, err := readGGUFString(llm, rs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read tensor name: %w", err)
|
||||
}
|
||||
|
||||
// dims is the number of dimensions in the tensor
|
||||
dims, err := readGGUF[uint32](llm, rs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read tensor dimensions: %w", err)
|
||||
}
|
||||
|
||||
shape := make([]uint64, dims)
|
||||
for i := 0; uint32(i) < dims; i++ {
|
||||
shape[i], err = readGGUF[uint64](llm, rs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read tensor shape: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
kind, err := readGGUF[uint32](llm, rs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read tensor kind: %w", err)
|
||||
}
|
||||
|
||||
offset, err := readGGUF[uint64](llm, rs)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to read tensor offset: %w", err)
|
||||
}
|
||||
|
||||
tensor := Tensor{
|
||||
Name: name,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
llm.tensors = append(llm.tensors, &tensor)
|
||||
llm.parameters += tensor.parameters()
|
||||
}
|
||||
|
||||
// patch KV with parameter count
|
||||
llm.kv["general.parameter_count"] = llm.parameters
|
||||
|
||||
alignment, ok := llm.kv["general.alignment"].(uint32)
|
||||
if !ok {
|
||||
alignment = 32
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
padding := ggufPadding(offset, int64(alignment))
|
||||
llm.tensorOffset = uint64(offset + padding)
|
||||
|
||||
for _, tensor := range llm.tensors {
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to get current offset: %w", err)
|
||||
}
|
||||
|
||||
padding := ggufPadding(offset, int64(alignment))
|
||||
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
|
||||
return fmt.Errorf("failed to seek to init padding: %w", err)
|
||||
}
|
||||
|
||||
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
|
||||
return fmt.Errorf("failed to seek to tensor: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
|
||||
var t T
|
||||
err := binary.Read(r, llm.ByteOrder, &t)
|
||||
return t, err
|
||||
}
|
||||
|
||||
func writeGGUF[V any](w io.Writer, t uint32, v V) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, v)
|
||||
}
|
||||
|
||||
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
|
||||
var length uint64
|
||||
if err := binary.Read(r, llm.ByteOrder, &length); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := io.CopyN(&b, r, int64(length)); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
// gguf v1 strings are null-terminated
|
||||
b.Truncate(b.Len() - 1)
|
||||
|
||||
return b.String(), nil
|
||||
}
|
||||
|
||||
func discardGGUFString(llm *gguf, r io.Reader) error {
|
||||
buf := llm.scratch[:8]
|
||||
_, err := io.ReadFull(r, buf)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
size := int(llm.ByteOrder.Uint64(buf))
|
||||
for size > 0 {
|
||||
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
size -= n
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func readGGUFString(llm *gguf, r io.Reader) (string, error) {
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1String(llm, r)
|
||||
}
|
||||
|
||||
buf := llm.scratch[:8]
|
||||
_, err := io.ReadFull(r, buf)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
length := int(llm.ByteOrder.Uint64(buf))
|
||||
if length > len(llm.scratch) {
|
||||
buf = make([]byte, length)
|
||||
} else {
|
||||
buf = llm.scratch[:length]
|
||||
}
|
||||
clear(buf)
|
||||
|
||||
_, err = io.ReadFull(r, buf)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return string(buf), nil
|
||||
}
|
||||
|
||||
func writeGGUFString(w io.Writer, s string) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err := io.Copy(w, strings.NewReader(s))
|
||||
return err
|
||||
}
|
||||
|
||||
type array struct {
|
||||
size int
|
||||
values []any
|
||||
}
|
||||
|
||||
func (a *array) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(a.values)
|
||||
}
|
||||
|
||||
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
n, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, 0, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
e, err = readGGUFV1String(llm, r)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if a.values != nil {
|
||||
a.values[i] = e
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1Array(llm, r)
|
||||
}
|
||||
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
n, err := readGGUF[uint64](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
if a.values != nil {
|
||||
e, err = readGGUFString(llm, r)
|
||||
} else {
|
||||
err = discardGGUFString(llm, r)
|
||||
}
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if a.values != nil {
|
||||
a.values[i] = e
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
// writeGGUFArray writes a slice s of type E to the write with a gguf type of t
|
||||
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, s)
|
||||
}
|
||||
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
keys := maps.Keys(kv)
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, key := range keys {
|
||||
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
slices.SortStableFunc(ts, func(a, b Tensor) int {
|
||||
if i, j := a.block(), b.block(); i < 0 && j > 0 {
|
||||
return 1
|
||||
} else if i > 0 && j < 0 {
|
||||
return -1
|
||||
} else {
|
||||
return cmp.Compare(i, j)
|
||||
}
|
||||
})
|
||||
|
||||
var s uint64
|
||||
for _, t := range ts {
|
||||
t.Offset = s
|
||||
if err := ggufWriteTensorInfo(ws, t); err != nil {
|
||||
return err
|
||||
}
|
||||
s += t.Size()
|
||||
}
|
||||
|
||||
var alignment int64 = 32
|
||||
for _, t := range ts {
|
||||
if err := ggufWriteTensor(ws, t, alignment); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
slog.Debug(k, "type", fmt.Sprintf("%T", v))
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case float32:
|
||||
err = writeGGUF(ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
err = writeGGUF(ws, ggufTypeBool, v)
|
||||
case string:
|
||||
err = writeGGUFString(ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case []float32:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v)
|
||||
case []string:
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range len(t.Shape) {
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = t.WriteTo(ws)
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufPadding(offset, align int64) int64 {
|
||||
return (align - offset%align) % align
|
||||
}
|
@ -11,18 +11,19 @@ import (
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
// Split up the GPUs by type and try them
|
||||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
} else {
|
||||
@ -70,7 +71,7 @@ type MemoryEstimate struct {
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
@ -115,33 +116,31 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
|
||||
layers := ggml.Tensors().Layers()
|
||||
layers := f.Tensors().Layers()
|
||||
// add one layer worth of memory as a buffer
|
||||
if blk0, ok := layers["blk.0"]; ok {
|
||||
layerSize = blk0.size()
|
||||
layerSize = blk0.Size()
|
||||
} else {
|
||||
slog.Warn("model missing blk.0 layer size")
|
||||
}
|
||||
|
||||
fa := envconfig.FlashAttention() &&
|
||||
discover.GetGPUInfo().FlashAttentionSupported() &&
|
||||
ggml.SupportsFlashAttention()
|
||||
|
||||
var kvct string
|
||||
if fa {
|
||||
if envconfig.FlashAttention() &&
|
||||
discover.GetGPUInfo().FlashAttentionSupported() &&
|
||||
f.SupportsFlashAttention() {
|
||||
requested := strings.ToLower(envconfig.KvCacheType())
|
||||
if requested != "" && ggml.SupportsKVCacheType(requested) {
|
||||
if requested != "" && f.SupportsKVCacheType(requested) {
|
||||
kvct = requested
|
||||
}
|
||||
}
|
||||
|
||||
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
graphPartialOffload = f.KV().GQA() * kv / 6
|
||||
}
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
@ -156,12 +155,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
|
||||
if layer, ok := layers["output_norm"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
}
|
||||
if layer, ok := layers["output"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
} else if layer, ok := layers["token_embd"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
@ -211,11 +210,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
|
||||
// For all the layers, find where they can fit on the GPU(s)
|
||||
for i := range int(ggml.KV().BlockCount()) {
|
||||
for i := range int(f.KV().BlockCount()) {
|
||||
// Some models have inconsistent layer sizes
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
layerSize = blk.size()
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
layerSize = blk.Size()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
}
|
||||
memoryWeights += layerSize
|
||||
|
||||
@ -238,10 +237,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
}
|
||||
}
|
||||
if layerCount >= int(ggml.KV().BlockCount()) {
|
||||
if layerCount >= int(f.KV().BlockCount()) {
|
||||
fullyLoaded = true
|
||||
} else {
|
||||
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
||||
for i := layerCount; i < int(f.KV().BlockCount()); i++ {
|
||||
overflow += layerSize
|
||||
}
|
||||
}
|
||||
@ -259,7 +258,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
}
|
||||
|
||||
if layerCount < int(ggml.KV().BlockCount())+1 {
|
||||
if layerCount < int(f.KV().BlockCount())+1 {
|
||||
fullyLoaded = false
|
||||
overflow += memoryLayerOutput
|
||||
}
|
||||
@ -311,7 +310,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
|
||||
inferenceLibrary: gpus[0].Library,
|
||||
layersRequested: opts.NumGPU,
|
||||
layersModel: int(ggml.KV().BlockCount()) + 1,
|
||||
layersModel: int(f.KV().BlockCount()) + 1,
|
||||
availableList: availableList,
|
||||
kv: kv,
|
||||
allocationsList: allocationsList,
|
||||
@ -409,13 +408,13 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
ggml, _, err := ggml.Decode(file, 0)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
weights += layer.size()
|
||||
weights += layer.Size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
|
@ -11,6 +11,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
func TestEstimateGPULayers(t *testing.T) {
|
||||
@ -23,7 +24,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
defer f.Close()
|
||||
inputLayerCount := 5
|
||||
|
||||
tensors := []Tensor{
|
||||
tensors := []ggml.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
@ -32,7 +33,7 @@ func TestEstimateGPULayers(t *testing.T) {
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
}
|
||||
assert.Len(t, tensors, inputLayerCount+1)
|
||||
err = WriteGGUF(f, KV{
|
||||
err = ggml.WriteGGUF(f, ggml.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
|
@ -28,6 +28,7 @@ import (
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/runners"
|
||||
)
|
||||
@ -72,7 +73,7 @@ type llmServer struct {
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
||||
// the maxArraySize is negative, all arrays are collected.
|
||||
func LoadModel(model string, maxArraySize int) (*GGML, error) {
|
||||
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
|
||||
if _, err := os.Stat(model); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -83,13 +84,13 @@ func LoadModel(model string, maxArraySize int) (*GGML, error) {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(f, maxArraySize)
|
||||
ggml, _, err := ggml.Decode(f, maxArraySize)
|
||||
return ggml, err
|
||||
}
|
||||
|
||||
// NewLlamaServer will run a server for the given GPUs
|
||||
// The gpu list must be a single family.
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
||||
var err error
|
||||
var cpuRunner string
|
||||
var estimate MemoryEstimate
|
||||
@ -109,9 +110,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
}
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
cpuRunner = runners.ServerForCpu()
|
||||
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate = EstimateGPULayers(gpus, f, projectors, opts)
|
||||
} else {
|
||||
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate = EstimateGPULayers(gpus, f, projectors, opts)
|
||||
|
||||
switch {
|
||||
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
|
||||
@ -212,7 +213,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
fa = false
|
||||
}
|
||||
|
||||
if fa && !ggml.SupportsFlashAttention() {
|
||||
if fa && !f.SupportsFlashAttention() {
|
||||
slog.Warn("flash attention enabled but not supported by model")
|
||||
fa = false
|
||||
}
|
||||
@ -225,7 +226,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
|
||||
// Flash Attention also supports kv cache quantization
|
||||
// Enable if the requested and kv cache type is supported by the model
|
||||
if kvct != "" && ggml.SupportsKVCacheType(kvct) {
|
||||
if kvct != "" && f.SupportsKVCacheType(kvct) {
|
||||
params = append(params, "--kv-cache-type", kvct)
|
||||
} else {
|
||||
slog.Warn("kv cache type not supported by model", "type", kvct)
|
||||
@ -238,7 +239,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
for _, g := range gpus {
|
||||
if g.Library == "metal" &&
|
||||
uint64(opts.NumGPU) > 0 &&
|
||||
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
|
||||
uint64(opts.NumGPU) < f.KV().BlockCount()+1 {
|
||||
opts.UseMMap = new(bool)
|
||||
*opts.UseMMap = false
|
||||
}
|
||||
@ -330,7 +331,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
|
||||
estimate: estimate,
|
||||
numParallel: numParallel,
|
||||
sem: semaphore.NewWeighted(int64(numParallel)),
|
||||
totalLayers: ggml.KV().BlockCount() + 1,
|
||||
totalLayers: f.KV().BlockCount() + 1,
|
||||
gpus: gpus,
|
||||
done: make(chan error, 1),
|
||||
}
|
||||
|
@ -29,7 +29,7 @@ type Backend struct {
|
||||
}
|
||||
|
||||
func New(r io.ReadSeeker) (ml.Backend, error) {
|
||||
f, _, err := ggml.DecodeGGML(r, -1)
|
||||
f, _, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
@ -25,8 +25,8 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/template"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
@ -89,7 +89,7 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
|
||||
defer f.Close()
|
||||
|
||||
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
|
||||
ggml, _, err := llm.DecodeGGML(f, 0)
|
||||
ggml, _, err := ggml.Decode(f, 0)
|
||||
if err != nil {
|
||||
slog.Error("couldn't decode ggml", "error", err)
|
||||
continue
|
||||
@ -429,7 +429,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
baseLayer.MediaType == "application/vnd.ollama.image.model" &&
|
||||
baseLayer.GGML != nil &&
|
||||
baseLayer.GGML.Name() == "gguf" {
|
||||
want, err := llm.ParseFileType(quantization)
|
||||
want, err := ggml.ParseFileType(quantization)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@ -465,7 +465,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
|
||||
return err
|
||||
}
|
||||
|
||||
ggml, _, err := llm.DecodeGGML(temp, 0)
|
||||
ggml, _, err := ggml.Decode(temp, 0)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
@ -18,7 +18,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/convert"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/template"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
@ -27,7 +27,7 @@ var intermediateBlobs map[string]string = make(map[string]string)
|
||||
|
||||
type layerGGML struct {
|
||||
Layer
|
||||
*llm.GGML
|
||||
*ggml.GGML
|
||||
}
|
||||
|
||||
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
|
||||
@ -67,7 +67,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
|
||||
}
|
||||
defer blob.Close()
|
||||
|
||||
ggml, _, err := llm.DecodeGGML(blob, 0)
|
||||
ggml, _, err := ggml.Decode(blob, 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -112,7 +112,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
|
||||
|
||||
switch command {
|
||||
case "adapter":
|
||||
var baseModel *llm.GGML
|
||||
var baseModel *ggml.GGML
|
||||
for _, l := range baseLayers {
|
||||
if l.GGML != nil {
|
||||
baseModel = l.GGML
|
||||
@ -150,7 +150,7 @@ func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML
|
||||
}
|
||||
defer bin.Close()
|
||||
|
||||
ggml, _, err := llm.DecodeGGML(bin, 0)
|
||||
ggml, _, err := ggml.Decode(bin, 0)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@ -184,7 +184,7 @@ func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML,
|
||||
|
||||
var offset int64
|
||||
for offset < stat.Size() {
|
||||
ggml, n, err := llm.DecodeGGML(file, 0)
|
||||
ggml, n, err := ggml.Decode(file, 0)
|
||||
if errors.Is(err, io.EOF) {
|
||||
break
|
||||
} else if err != nil {
|
||||
@ -263,7 +263,7 @@ func detectContentType(r io.Reader) (string, error) {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" {
|
||||
if contentType := ggml.DetectContentType(b.Bytes()); contentType != "" {
|
||||
return contentType, nil
|
||||
}
|
||||
|
||||
|
@ -13,7 +13,7 @@ import (
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/template"
|
||||
)
|
||||
|
||||
@ -148,7 +148,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
|
||||
t.Fatalf("failed to open file: %v", err)
|
||||
}
|
||||
defer file.Close()
|
||||
if err := llm.WriteGGUF(file, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
|
||||
if err := ggml.WriteGGUF(file, ggml.KV{"general.architecture": "gemma"}, []ggml.Tensor{}); err != nil {
|
||||
t.Fatalf("failed to write gguf: %v", err)
|
||||
}
|
||||
|
||||
@ -201,7 +201,7 @@ func TestParseLayerFromCopy(t *testing.T) {
|
||||
defer file2.Close()
|
||||
|
||||
for range 5 {
|
||||
if err := llm.WriteGGUF(file2, llm.KV{"general.architecture": "gemma"}, []llm.Tensor{}); err != nil {
|
||||
if err := ggml.WriteGGUF(file2, ggml.KV{"general.architecture": "gemma"}, []ggml.Tensor{}); err != nil {
|
||||
t.Fatalf("failed to write gguf: %v", err)
|
||||
}
|
||||
}
|
||||
|
@ -29,6 +29,7 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/openai"
|
||||
"github.com/ollama/ollama/parser"
|
||||
@ -870,7 +871,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
func getKVData(digest string, verbose bool) (llm.KV, error) {
|
||||
func getKVData(digest string, verbose bool) (ggml.KV, error) {
|
||||
maxArraySize := 0
|
||||
if verbose {
|
||||
maxArraySize = -1
|
||||
|
@ -16,12 +16,12 @@ import (
|
||||
"github.com/gin-gonic/gin"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
var stream bool = false
|
||||
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []ggml.Tensor) string {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "")
|
||||
@ -30,7 +30,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := llm.WriteGGUF(f, kv, ti); err != nil {
|
||||
if err := ggml.WriteGGUF(f, kv, ti); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@ -581,7 +581,7 @@ func TestCreateDetectTemplate(t *testing.T) {
|
||||
t.Run("matched", func(t *testing.T) {
|
||||
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
||||
Name: "test",
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, ggml.KV{
|
||||
"tokenizer.chat_template": "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
||||
}, nil)),
|
||||
Stream: &stream,
|
||||
|
@ -17,6 +17,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
@ -46,8 +47,8 @@ func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error
|
||||
return
|
||||
}
|
||||
|
||||
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
|
||||
return func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *ggml.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
|
||||
return func(gpus discover.GpuInfoList, model string, f *ggml.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return mock, nil
|
||||
}
|
||||
}
|
||||
@ -77,7 +78,7 @@ func TestGenerateChat(t *testing.T) {
|
||||
getGpuFn: discover.GetGPUInfo,
|
||||
getCpuFn: discover.GetCPUInfo,
|
||||
reschedDelay: 250 * time.Millisecond,
|
||||
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
loadFn: func(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
// add small delay to simulate loading
|
||||
time.Sleep(time.Millisecond)
|
||||
req.successCh <- &runnerRef{
|
||||
@ -101,7 +102,7 @@ func TestGenerateChat(t *testing.T) {
|
||||
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
|
||||
{{- end }}
|
||||
{{ end }}"""
|
||||
`, createBinFile(t, llm.KV{
|
||||
`, createBinFile(t, ggml.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.block_count": uint32(1),
|
||||
"llama.context_length": uint32(8192),
|
||||
@ -111,7 +112,7 @@ func TestGenerateChat(t *testing.T) {
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
}, []ggml.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
@ -156,10 +157,10 @@ func TestGenerateChat(t *testing.T) {
|
||||
t.Run("missing capabilities chat", func(t *testing.T) {
|
||||
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, ggml.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []llm.Tensor{})),
|
||||
}, []ggml.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
@ -610,7 +611,7 @@ func TestGenerate(t *testing.T) {
|
||||
getGpuFn: discover.GetGPUInfo,
|
||||
getCpuFn: discover.GetCPUInfo,
|
||||
reschedDelay: 250 * time.Millisecond,
|
||||
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
loadFn: func(req *LlmRequest, _ *ggml.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
// add small delay to simulate loading
|
||||
time.Sleep(time.Millisecond)
|
||||
req.successCh <- &runnerRef{
|
||||
@ -629,7 +630,7 @@ func TestGenerate(t *testing.T) {
|
||||
{{- if .System }}System: {{ .System }} {{ end }}
|
||||
{{- if .Prompt }}User: {{ .Prompt }} {{ end }}
|
||||
{{- if .Response }}Assistant: {{ .Response }} {{ end }}"""
|
||||
`, createBinFile(t, llm.KV{
|
||||
`, createBinFile(t, ggml.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.block_count": uint32(1),
|
||||
"llama.context_length": uint32(8192),
|
||||
@ -639,7 +640,7 @@ func TestGenerate(t *testing.T) {
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
}, []ggml.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
@ -684,10 +685,10 @@ func TestGenerate(t *testing.T) {
|
||||
t.Run("missing capabilities generate", func(t *testing.T) {
|
||||
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, llm.KV{
|
||||
Modelfile: fmt.Sprintf("FROM %s", createBinFile(t, ggml.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []llm.Tensor{})),
|
||||
}, []ggml.Tensor{})),
|
||||
Stream: &stream,
|
||||
})
|
||||
|
||||
|
@ -21,7 +21,7 @@ import (
|
||||
"unicode"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/openai"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
@ -612,8 +612,8 @@ func TestShow(t *testing.T) {
|
||||
Name: "show-model",
|
||||
Modelfile: fmt.Sprintf(
|
||||
"FROM %s\nFROM %s",
|
||||
createBinFile(t, llm.KV{"general.architecture": "test"}, nil),
|
||||
createBinFile(t, llm.KV{"general.type": "projector", "general.architecture": "clip"}, nil),
|
||||
createBinFile(t, ggml.KV{"general.architecture": "test"}, nil),
|
||||
createBinFile(t, ggml.KV{"general.type": "projector", "general.architecture": "clip"}, nil),
|
||||
),
|
||||
})
|
||||
|
||||
|
@ -18,6 +18,7 @@ import (
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
@ -41,8 +42,8 @@ type Scheduler struct {
|
||||
loaded map[string]*runnerRef
|
||||
loadedMu sync.Mutex
|
||||
|
||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int)
|
||||
newServerFn func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
|
||||
loadFn func(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel int)
|
||||
newServerFn func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
|
||||
getGpuFn func() discover.GpuInfoList
|
||||
getCpuFn func() discover.GpuInfoList
|
||||
reschedDelay time.Duration
|
||||
@ -409,7 +410,7 @@ func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *Llm
|
||||
}()
|
||||
}
|
||||
|
||||
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
func (s *Scheduler) load(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
if numParallel < 1 {
|
||||
numParallel = 1
|
||||
}
|
||||
@ -417,12 +418,12 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoL
|
||||
if req.sessionDuration != nil {
|
||||
sessionDuration = req.sessionDuration.Duration
|
||||
}
|
||||
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
|
||||
llama, err := s.newServerFn(gpus, req.model.ModelPath, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
|
||||
if err != nil {
|
||||
// some older models are not compatible with newer versions of llama.cpp
|
||||
// show a generalized compatibility error until there is a better way to
|
||||
// check for model compatibility
|
||||
if errors.Is(err, llm.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
|
||||
if errors.Is(err, ggml.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
|
||||
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
|
||||
}
|
||||
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
|
||||
@ -685,7 +686,7 @@ func (a ByDuration) Less(i, j int) bool {
|
||||
// If the model can not be fit fully within the available GPU(s) nil is returned
|
||||
// If numParallel is <= 0, this will attempt try to optimize parallelism based on available VRAM, and adjust
|
||||
// opts.NumCtx accordingly
|
||||
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
var estimatedVRAM uint64
|
||||
|
||||
var numParallelToTry []int
|
||||
@ -710,7 +711,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
|
||||
req.opts.NumCtx = req.origNumCtx * p
|
||||
if !envconfig.SchedSpread() {
|
||||
for _, g := range sgl {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||
*numParallel = p
|
||||
return []discover.GpuInfo{g}
|
||||
@ -726,7 +727,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
|
||||
// Now try all the GPUs
|
||||
for _, p := range numParallelToTry {
|
||||
req.opts.NumCtx = req.origNumCtx * p
|
||||
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
|
||||
*numParallel = p
|
||||
return sgl
|
||||
@ -737,7 +738,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
|
||||
}
|
||||
|
||||
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
|
||||
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
func pickBestPartialFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
if *numParallel <= 0 {
|
||||
*numParallel = 1
|
||||
req.opts.NumCtx = req.origNumCtx
|
||||
@ -749,7 +750,7 @@ func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.
|
||||
var bestEstimate uint64
|
||||
var bestFit int
|
||||
for i, gl := range byLibrary {
|
||||
_, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
|
||||
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
|
||||
if estimatedVRAM > bestEstimate {
|
||||
bestEstimate = estimatedVRAM
|
||||
bestFit = i
|
||||
@ -822,9 +823,9 @@ func (s *Scheduler) expireRunner(model *Model) {
|
||||
|
||||
// If other runners are loaded, make sure the pending request will fit in system memory
|
||||
// If not, pick a runner to unload, else return nil and the request can be loaded
|
||||
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList) *runnerRef {
|
||||
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList) *runnerRef {
|
||||
slog.Debug("evaluating if CPU model load will fit in available system memory")
|
||||
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
|
||||
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts)
|
||||
if estimate.TotalSize <= gpus[0].FreeMemory {
|
||||
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
|
||||
return nil
|
||||
|
@ -15,6 +15,7 @@ import (
|
||||
"github.com/ollama/ollama/app/lifecycle"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
@ -37,7 +38,7 @@ func TestLoad(t *testing.T) {
|
||||
ctx, done := context.WithTimeout(context.Background(), 20*time.Millisecond)
|
||||
defer done()
|
||||
s := InitScheduler(ctx)
|
||||
var ggml *llm.GGML // value not used in tests
|
||||
var f *ggml.GGML // value not used in tests
|
||||
req := &LlmRequest{
|
||||
ctx: ctx,
|
||||
model: &Model{ModelPath: "foo"},
|
||||
@ -47,11 +48,11 @@ func TestLoad(t *testing.T) {
|
||||
sessionDuration: &api.Duration{Duration: 2 * time.Second},
|
||||
}
|
||||
// Fail to load model first
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return nil, errors.New("something failed to load model blah")
|
||||
}
|
||||
gpus := discover.GpuInfoList{}
|
||||
s.load(req, ggml, gpus, 0)
|
||||
s.load(req, f, gpus, 0)
|
||||
require.Empty(t, req.successCh)
|
||||
require.Len(t, req.errCh, 1)
|
||||
s.loadedMu.Lock()
|
||||
@ -61,10 +62,10 @@ func TestLoad(t *testing.T) {
|
||||
require.Contains(t, err.Error(), "this model may be incompatible")
|
||||
|
||||
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return server, nil
|
||||
}
|
||||
s.load(req, ggml, gpus, 0)
|
||||
s.load(req, f, gpus, 0)
|
||||
select {
|
||||
case err := <-req.errCh:
|
||||
require.NoError(t, err)
|
||||
@ -78,7 +79,7 @@ func TestLoad(t *testing.T) {
|
||||
|
||||
req.model.ModelPath = "dummy_model_path"
|
||||
server.waitResp = errors.New("wait failure")
|
||||
s.load(req, ggml, gpus, 0)
|
||||
s.load(req, f, gpus, 0)
|
||||
select {
|
||||
case err := <-req.errCh:
|
||||
require.Contains(t, err.Error(), "wait failure")
|
||||
@ -99,10 +100,10 @@ type reqBundle struct {
|
||||
ctxDone func()
|
||||
srv *mockLlm
|
||||
req *LlmRequest
|
||||
ggml *llm.GGML
|
||||
f *ggml.GGML
|
||||
}
|
||||
|
||||
func (scenario *reqBundle) newServer(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
func (scenario *reqBundle) newServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return scenario.srv, nil
|
||||
}
|
||||
|
||||
@ -115,7 +116,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
require.NoError(t, err)
|
||||
defer f.Close()
|
||||
|
||||
require.NoError(t, llm.WriteGGUF(f, llm.KV{
|
||||
require.NoError(t, ggml.WriteGGUF(f, ggml.KV{
|
||||
"general.architecture": "llama",
|
||||
"llama.context_length": uint32(32),
|
||||
"llama.embedding_length": uint32(4096),
|
||||
@ -125,7 +126,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
"tokenizer.ggml.tokens": []string{" "},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []llm.Tensor{
|
||||
}, []ggml.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
}))
|
||||
@ -133,7 +134,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
|
||||
fname := f.Name()
|
||||
model := &Model{Name: modelName, ModelPath: fname}
|
||||
b.ggml, err = llm.LoadModel(model.ModelPath, 0)
|
||||
b.f, err = llm.LoadModel(model.ModelPath, 0)
|
||||
require.NoError(t, err)
|
||||
|
||||
if duration == nil {
|
||||
@ -174,7 +175,7 @@ func TestRequestsSameModelSameRequest(t *testing.T) {
|
||||
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
|
||||
b := newScenarioRequest(t, ctx, "ollama-model-1", 11, &api.Duration{Duration: 0})
|
||||
b.req.model = a.req.model
|
||||
b.ggml = a.ggml
|
||||
b.f = a.f
|
||||
|
||||
s.newServerFn = a.newServer
|
||||
slog.Info("a")
|
||||
@ -218,7 +219,7 @@ func TestRequestsSimpleReloadSameModel(t *testing.T) {
|
||||
b := newScenarioRequest(t, ctx, "ollama-model-1", 20, &api.Duration{Duration: 5 * time.Millisecond})
|
||||
tmpModel := *a.req.model
|
||||
b.req.model = &tmpModel
|
||||
b.ggml = a.ggml
|
||||
b.f = a.f
|
||||
|
||||
s.newServerFn = a.newServer
|
||||
slog.Info("a")
|
||||
@ -419,13 +420,13 @@ func TestExpireRunner(t *testing.T) {
|
||||
sessionDuration: &api.Duration{Duration: 2 * time.Minute},
|
||||
}
|
||||
|
||||
var ggml *llm.GGML
|
||||
var f *ggml.GGML
|
||||
gpus := discover.GpuInfoList{}
|
||||
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
return server, nil
|
||||
}
|
||||
s.load(req, ggml, gpus, 0)
|
||||
s.load(req, f, gpus, 0)
|
||||
|
||||
select {
|
||||
case err := <-req.errCh:
|
||||
@ -729,9 +730,9 @@ func TestHomogeneousGPUs(t *testing.T) {
|
||||
}
|
||||
s.getCpuFn = getCpuFn
|
||||
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
|
||||
require.Len(t, gpus, 1)
|
||||
return a.newServer(gpus, model, ggml, adapters, projectors, opts, numParallel)
|
||||
return a.newServer(gpus, model, f, adapters, projectors, opts, numParallel)
|
||||
}
|
||||
slog.Info("a")
|
||||
s.pendingReqCh <- a.req
|
||||
|
@ -14,7 +14,7 @@ import (
|
||||
"github.com/google/go-cmp/cmp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
func TestNamed(t *testing.T) {
|
||||
@ -33,7 +33,7 @@ func TestNamed(t *testing.T) {
|
||||
|
||||
for k, v := range ss {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
kv := llm.KV{"tokenizer.chat_template": v}
|
||||
kv := ggml.KV{"tokenizer.chat_template": v}
|
||||
s := kv.ChatTemplate()
|
||||
r, err := Named(s)
|
||||
if err != nil {
|
||||
|
Loading…
x
Reference in New Issue
Block a user