mirror of
https://github.com/ollama/ollama.git
synced 2025-03-18 05:41:43 +01:00
fix conversion
This commit is contained in:
parent
0df1800436
commit
c62861f4fa
@ -190,8 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
@ -226,6 +226,9 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
}
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
vocabSize = len(t.Vocabulary.Tokens)
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
|
@ -4,7 +4,13 @@ import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type gemma3Model struct {
|
||||
gemmaModel
|
||||
TextModel gemma3TextModel `json:"text_config"`
|
||||
Architecture string
|
||||
TextModel struct {
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||
@ -15,49 +21,54 @@ type gemma3Model struct {
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
type gemma3TextModel struct {
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
}
|
||||
|
||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3"
|
||||
kv["gemma3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
||||
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["gemma3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.text.final_logit_softcapping"] = p.TextModel.FinalLogitSoftcap
|
||||
kv["gemma3.text.rope.local.freq_base"] = p.TextModel.RopeLocalTheta
|
||||
kv["gemma3.text.rope.global.freq_base"] = p.TextModel.RopeGlobalTheta
|
||||
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = p.VisionModel.LayerNormEpsilon
|
||||
switch p.Architecture {
|
||||
case "Gemma3ForCausalLM":
|
||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma3.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["gemma3.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.text.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.text.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||
kv["gemma3.text.rope.local.freq_base"] = p.RopeLocalTheta
|
||||
kv["gemma3.text.rope.global.freq_base"] = p.RopeGlobalTheta
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.block_count"] = p.HiddenLayers
|
||||
kv["gemma3.text.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
||||
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = p.VisionModel.LayerNormEpsilon
|
||||
}
|
||||
|
||||
kv["tokenizer.ggml.bos_token_id"] = uint32(2)
|
||||
kv["tokenizer.ggml.eot_token_id"] = uint32(1)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
|
@ -32,7 +32,8 @@ type TextModel struct {
|
||||
}
|
||||
|
||||
const (
|
||||
gemma27BLayerCount = 46
|
||||
gemmaGlobalCacheCount = 6
|
||||
gemma27BLayerCount = 46
|
||||
)
|
||||
|
||||
const (
|
||||
@ -55,15 +56,15 @@ func newTextModel(c ml.Config) *TextModel {
|
||||
Layers: make([]TextLayer, c.Uint("block_count")),
|
||||
TextOptions: &TextOptions{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
attnKeyLen: int(c.Uint("attention.key_length")),
|
||||
attnValLen: int(c.Uint("attention.value_length")),
|
||||
eps: c.Float("text.attention.layer_norm_rms_epsilon"),
|
||||
numHeads: int(c.Uint("attention.head_count", 8)),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv", 4)),
|
||||
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||
eps: c.Float("text.attention.layer_norm_rms_epsilon", 1e-06),
|
||||
ropeLocalBase: c.Float("text.rope.local.freq_base", 10000.0),
|
||||
ropeGlobalBase: c.Float("text.rope.global.freq_base", 1000000.0),
|
||||
ropeScale: c.Float("text.rope.freq_scale", 1.0),
|
||||
finalLogitSoftcap: c.Float("text.final_logit_softcapping"),
|
||||
finalLogitSoftcap: c.Float("text.final_logit_softcapping", 30.0),
|
||||
},
|
||||
}
|
||||
|
||||
@ -84,7 +85,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
ropeType := uint32(2)
|
||||
|
||||
ropeBase := opts.ropeLocalBase
|
||||
if (layer+1)%6 == 0 {
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = opts.ropeGlobalBase
|
||||
}
|
||||
|
||||
@ -116,7 +117,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
||||
|
||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
ropeBase := m.TextOptions.ropeLocalBase
|
||||
if (layer+1)%6 == 0 {
|
||||
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||
ropeBase = m.TextOptions.ropeGlobalBase
|
||||
}
|
||||
|
||||
@ -184,7 +185,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
// gemma alternates between the sliding window (local) and causal (global)
|
||||
// kv cache every 6 layers
|
||||
cacheType := cacheTypeSWA
|
||||
if (i+1)%6 == 0 {
|
||||
if (i+1)%gemmaGlobalCacheCount == 0 {
|
||||
cacheType = cacheTypeCausal
|
||||
}
|
||||
cache.SetLayer(i)
|
||||
|
Loading…
x
Reference in New Issue
Block a user