mirror of
https://github.com/ollama/ollama.git
synced 2025-06-07 02:59:26 +02:00
fix conversion
This commit is contained in:
parent
0df1800436
commit
c62861f4fa
@ -190,8 +190,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
|||||||
conv = &gemmaModel{}
|
conv = &gemmaModel{}
|
||||||
case "Gemma2ForCausalLM":
|
case "Gemma2ForCausalLM":
|
||||||
conv = &gemma2Model{}
|
conv = &gemma2Model{}
|
||||||
case "Gemma3ForConditionalGeneration":
|
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||||
conv = &gemma3Model{}
|
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||||
case "Phi3ForCausalLM":
|
case "Phi3ForCausalLM":
|
||||||
conv = &phi3Model{}
|
conv = &phi3Model{}
|
||||||
case "Qwen2ForCausalLM":
|
case "Qwen2ForCausalLM":
|
||||||
@ -226,6 +226,9 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
|||||||
}
|
}
|
||||||
|
|
||||||
switch {
|
switch {
|
||||||
|
case vocabSize == 0:
|
||||||
|
slog.Warn("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||||
|
vocabSize = len(t.Vocabulary.Tokens)
|
||||||
case vocabSize > len(t.Vocabulary.Tokens):
|
case vocabSize > len(t.Vocabulary.Tokens):
|
||||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||||
|
@ -4,7 +4,13 @@ import "github.com/ollama/ollama/fs/ggml"
|
|||||||
|
|
||||||
type gemma3Model struct {
|
type gemma3Model struct {
|
||||||
gemmaModel
|
gemmaModel
|
||||||
TextModel gemma3TextModel `json:"text_config"`
|
Architecture string
|
||||||
|
TextModel struct {
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
} `json:"text_config"`
|
||||||
VisionModel struct {
|
VisionModel struct {
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||||
@ -15,49 +21,54 @@ type gemma3Model struct {
|
|||||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||||
} `json:"vision_config"`
|
} `json:"vision_config"`
|
||||||
}
|
|
||||||
|
|
||||||
type gemma3TextModel struct {
|
|
||||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
HiddenSize uint32 `json:"hidden_size"`
|
|
||||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
||||||
IntermediateSize uint32 `json:"intermediate_size"`
|
|
||||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
HeadDim uint32 `json:"head_dim"`
|
HeadDim uint32 `json:"head_dim"`
|
||||||
SlidingWindow uint32 `json:"sliding_window"`
|
|
||||||
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
|
||||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma3"
|
kv["general.architecture"] = "gemma3"
|
||||||
kv["gemma3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
|
||||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
|
||||||
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
|
||||||
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
|
||||||
kv["gemma3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
|
||||||
kv["gemma3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
|
||||||
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
|
||||||
kv["gemma3.attention.key_length"] = p.TextModel.HeadDim
|
|
||||||
kv["gemma3.attention.value_length"] = p.TextModel.HeadDim
|
|
||||||
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
|
||||||
kv["gemma3.text.final_logit_softcapping"] = p.TextModel.FinalLogitSoftcap
|
|
||||||
kv["gemma3.text.rope.local.freq_base"] = p.TextModel.RopeLocalTheta
|
|
||||||
kv["gemma3.text.rope.global.freq_base"] = p.TextModel.RopeGlobalTheta
|
|
||||||
|
|
||||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
switch p.Architecture {
|
||||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
case "Gemma3ForCausalLM":
|
||||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
kv["gemma3.attention.head_count"] = p.NumAttentionHeads
|
||||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
kv["gemma3.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
|
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = p.VisionModel.LayerNormEpsilon
|
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||||
|
kv["gemma3.text.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
kv["gemma3.text.final_logit_softcapping"] = p.FinalLogitSoftcap
|
||||||
|
kv["gemma3.text.rope.local.freq_base"] = p.RopeLocalTheta
|
||||||
|
kv["gemma3.text.rope.global.freq_base"] = p.RopeGlobalTheta
|
||||||
|
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||||
|
kv["gemma3.block_count"] = p.HiddenLayers
|
||||||
|
kv["gemma3.text.feed_forward_length"] = p.IntermediateSize
|
||||||
|
default:
|
||||||
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
|
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
||||||
|
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||||
|
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||||
|
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["gemma3.vision.attention.layer_norm_epsilon"] = p.VisionModel.LayerNormEpsilon
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["tokenizer.ggml.bos_token_id"] = uint32(2)
|
||||||
|
kv["tokenizer.ggml.eot_token_id"] = uint32(1)
|
||||||
|
|
||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -32,7 +32,8 @@ type TextModel struct {
|
|||||||
}
|
}
|
||||||
|
|
||||||
const (
|
const (
|
||||||
gemma27BLayerCount = 46
|
gemmaGlobalCacheCount = 6
|
||||||
|
gemma27BLayerCount = 46
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
@ -55,15 +56,15 @@ func newTextModel(c ml.Config) *TextModel {
|
|||||||
Layers: make([]TextLayer, c.Uint("block_count")),
|
Layers: make([]TextLayer, c.Uint("block_count")),
|
||||||
TextOptions: &TextOptions{
|
TextOptions: &TextOptions{
|
||||||
hiddenSize: int(c.Uint("embedding_length")),
|
hiddenSize: int(c.Uint("embedding_length")),
|
||||||
numHeads: int(c.Uint("attention.head_count")),
|
numHeads: int(c.Uint("attention.head_count", 8)),
|
||||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
numKVHeads: int(c.Uint("attention.head_count_kv", 4)),
|
||||||
attnKeyLen: int(c.Uint("attention.key_length")),
|
attnKeyLen: int(c.Uint("attention.key_length", 256)),
|
||||||
attnValLen: int(c.Uint("attention.value_length")),
|
attnValLen: int(c.Uint("attention.value_length", 256)),
|
||||||
eps: c.Float("text.attention.layer_norm_rms_epsilon"),
|
eps: c.Float("text.attention.layer_norm_rms_epsilon", 1e-06),
|
||||||
ropeLocalBase: c.Float("text.rope.local.freq_base", 10000.0),
|
ropeLocalBase: c.Float("text.rope.local.freq_base", 10000.0),
|
||||||
ropeGlobalBase: c.Float("text.rope.global.freq_base", 1000000.0),
|
ropeGlobalBase: c.Float("text.rope.global.freq_base", 1000000.0),
|
||||||
ropeScale: c.Float("text.rope.freq_scale", 1.0),
|
ropeScale: c.Float("text.rope.freq_scale", 1.0),
|
||||||
finalLogitSoftcap: c.Float("text.final_logit_softcapping"),
|
finalLogitSoftcap: c.Float("text.final_logit_softcapping", 30.0),
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -84,7 +85,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
|||||||
ropeType := uint32(2)
|
ropeType := uint32(2)
|
||||||
|
|
||||||
ropeBase := opts.ropeLocalBase
|
ropeBase := opts.ropeLocalBase
|
||||||
if (layer+1)%6 == 0 {
|
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||||
ropeBase = opts.ropeGlobalBase
|
ropeBase = opts.ropeGlobalBase
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -116,7 +117,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
|
|||||||
|
|
||||||
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||||
ropeBase := m.TextOptions.ropeLocalBase
|
ropeBase := m.TextOptions.ropeLocalBase
|
||||||
if (layer+1)%6 == 0 {
|
if (layer+1)%gemmaGlobalCacheCount == 0 {
|
||||||
ropeBase = m.TextOptions.ropeGlobalBase
|
ropeBase = m.TextOptions.ropeGlobalBase
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -184,7 +185,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
|||||||
// gemma alternates between the sliding window (local) and causal (global)
|
// gemma alternates between the sliding window (local) and causal (global)
|
||||||
// kv cache every 6 layers
|
// kv cache every 6 layers
|
||||||
cacheType := cacheTypeSWA
|
cacheType := cacheTypeSWA
|
||||||
if (i+1)%6 == 0 {
|
if (i+1)%gemmaGlobalCacheCount == 0 {
|
||||||
cacheType = cacheTypeCausal
|
cacheType = cacheTypeCausal
|
||||||
}
|
}
|
||||||
cache.SetLayer(i)
|
cache.SetLayer(i)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user