fix patch batch

This commit is contained in:
Michael Yang 2025-03-31 13:42:15 -07:00
parent 6184028fc0
commit e6b561005e
3 changed files with 49 additions and 48 deletions

View File

@ -7,6 +7,7 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
@ -41,6 +42,47 @@ func New(c ml.Config) (model.Model, error) {
return m, nil
}
type PatchMerger struct {
MergingLayer *nn.Linear `gguf:"merging_layer"`
}
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
d := visionOutputs.Dim(0)
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
return pm.MergingLayer.Forward(ctx, reshaped)
}
type MultiModalProjector struct {
Norm *nn.RMSNorm `gguf:"norm"`
Linear1 *nn.Linear `gguf:"linear_1"`
Linear2 *nn.Linear `gguf:"linear_2"`
PatchMerger *PatchMerger `gguf:"patch_merger"`
spatialMergeSize int
eps float32
patchSize int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
visionOutputs = visionOutputs.GELU(ctx)
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
}
func newMultiModalProjector(c ml.Config) *MultiModalProjector {
return &MultiModalProjector{
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
eps: c.Float("text_config.rms_norm_eps", 1e-5),
patchSize: int(c.Uint("vision.patch_size", 14)),
}
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
@ -80,19 +122,21 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.([]ml.Tensor)
for i, row := range inputMultimodal {
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.Dim(1)}) // Image data
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Dim(1)-1)...) // [IMG]
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.Dim(1) + 1})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Dim(1)-1)...)
if i == len(inputMultimodal)-1 {
result = append(result, input.Input{Token: 13}) // [IMG_END]
// [IMG_END]
result = append(result, input.Input{Token: 13})
} else {
result = append(result, input.Input{Token: 12}) // [IMG_BREAK]
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
}
}
}

View File

@ -111,7 +111,6 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
// image embeddings
for _, image := range batch.Multimodal {
visionOutputs := image.Multimodal.(ml.Tensor)
// TODO (jmorganca): this fails on metal
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
}

View File

@ -1,7 +1,6 @@
package mistral3
import (
"image"
"math"
"slices"
@ -11,10 +10,6 @@ import (
var batchSize int = 1
type PatchMerger struct {
MergingLayer *nn.Linear `gguf:"merging_layer"`
}
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
@ -25,43 +20,6 @@ func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Te
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
d := visionOutputs.Dim(0)
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
return pm.MergingLayer.Forward(ctx, reshaped)
}
type MultiModalProjector struct {
Norm *nn.RMSNorm `gguf:"norm"`
Linear1 *nn.Linear `gguf:"linear_1"`
Linear2 *nn.Linear `gguf:"linear_2"`
PatchMerger *PatchMerger `gguf:"patch_merger"`
spatialMergeSize int
eps float32
patchSize int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
visionOutputs = visionOutputs.GELU(ctx)
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
}
func newMultiModalProjector(c ml.Config) *MultiModalProjector {
return &MultiModalProjector{
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
eps: c.Float("text_config.rms_norm_eps", 1e-5),
patchSize: int(c.Uint("vision.patch_size", 14)),
}
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`